Math, asked by VarshithaRoy, 8 months ago

If the lines ax+by+c=0, bx+cy+a=0,cx+ay+b=0,a not equal to be not equal to c are concurrent then the point of concurrency is​

Answers

Answered by MaheswariS
3

\underline{\textsf{Given:}}

\textsf{The lines}

\mathsf{ax+by+c=0,bx+cy+a=0,cx+ay+b=0}\;\textsf{are concurrent}

\underline{\textsf{To find:}}

\textsf{The point of concurency}

\underline{\textsf{Solution:}}

\textsf{Since the lines are concurrent, the point of concurrency}

\textsf{can be obtained by solving any two of the equations}

\textsf{Now, we solve the equations (1) and (2) by cross multiplication rule}

\mathsf{ax+by+c=0}

\mathsf{bx+cy+a=0}

\textsf{By cross multiplication rule,}

\mathsf{\dfrac{x}{ab-c^2}=\dfrac{y}{bc-a^2}=\dfrac{1}{ac-b^2}}

\implies\mathsf{\dfrac{x}{ab-c^2}=\dfrac{1}{ac-b^2}}

\implies\mathsf{x=\dfrac{ab-c^2}{ac-b^2}}

\text{and}

\mathsf{\dfrac{y}{bc-a^2}=\dfrac{1}{ac-b^2}}

\mathsf{y=\dfrac{bc-a^2}{ac-b^2}}

\therefore\textsf{The point of concurrency is}

\mathsf{(\dfrac{ab-c^2}{ac-b^2},\dfrac{bc-a^2}{ac-b^2})}

Similar questions