Math, asked by smartboytt1984, 9 months ago

If the lines given by 3x+2ky=2 and 6x+8y=4 are coincide , then the value of k is​

Answers

Answered by AlluringNightingale
3

Answer :

k = 2

Note:

★ A linear equation is two variables represent a straight line .

★ The word consistent is used for the system of equations which consists any solution .

★ The word inconsistent is used for the system of equations which doesn't consists any solution .

★ Solution of a system of equations : It refers to the possibile values of the variable which satisfy all the equations in the given system .

★ A pair of linear equations are said to be consistent if their graph ( Straight line ) either intersect or coincide each other .

★ A pair of linear equations are said to be inconsistent if their graph ( Straight line ) are parallel .

★ If we consider equations of two straight line

ax + by + c = 0 and a'x + b'y + c' = 0 , then ;

• The lines are intersecting if a/a' ≠ b/b' .

→ In this case , unique solution is found .

• The lines are coincident if a/a' = b/b' = c/c' .

→ In this case , infinitely many solutions are found .

• The lines are parallel if a/a' = b/b' ≠ c/c' .

→ In this case , no solution is found .

Solution :

Here ,

The given linear equations are ;

3x + 2ky = 2

6x + 8y = 4

The given linear equations can be rewritten in there general form as ;

3x + 2ky - 2 = 0

6x + 8y - 4 = 0

Clearly ,

a = 3

a' = 6

b = 2k

b' = 8

c = -2

c' = -4

Now ,

a/a' = 3/6 = 1/2

b/b' = 2k/8 = k/4

c/c' = -2/-4 = 1/2

The given lines will coincide each other if → a/a' = b/b' = c/c'

→ 1/2 = k/4 = 1/2

→ k/4 = 1/2

→ k = ½ × 4

→ k = 4/2

→ k = 2

Hence , k = 2 .

Similar questions