Math, asked by vijaythakare784, 9 months ago

If the lines given by 3x + 2ky = 22 , x + 5y + 1 = 0 are parallel, then the value of k is ​

Answers

Answered by brightred10101
1

Answer:

3/2

Step-by-step explanation:

The condition for parallel lines is a1/a2 =b1/b2 ≠ c1/c2

3/1 = 2k/1 ≠ 22/0

3/1 = 2k/1

3 = 2k

k=3/2

Mark this as the brainliest if you found it helpful!

Answered by Anonymous
6

Answer:

 \bf \: 3x + 2ky - 2 = 0 \:  \: ..........(1) \\  \\  \bf \: 2x + 5y + 1 = 0.........(2) \\  \\  \sf \underline{for \:  \:  \: parallel \:  \: lines \:  \:  : } \\  \\

 \bf \large \boxed{ \frac{a_1 }{a_2}  =  \frac{b_1}{b_2}  ≠ \frac{c_1}{c_2} }

  \star\bf \: a_1  = 3 \\  \star\bf \: a_2 = 2 \\  \star\bf \:  b_1 = 2k \\  \star\bf \:  b_2 = 5 \\ \star \bf \:  c_1 =  - 2 \\  \star\bf \:  c_2 = 1

 \bf  \large : \longmapsto \:  \frac{a_1}{a_2}  =  \frac{b_1}{b_2}  \\  \\ \bf  \large : \longmapsto \: \frac{3}{2}  =  \frac{2k}{5}  \\  \\ \bf  \large : \longmapsto \:2k =  \frac{5 \times 3}{2}  \\  \\ \bf  \large : \longmapsto \:2k =  \frac{15}{2}  \\  \\ \bf  \large : \longmapsto \:k =  \frac{15}{2 \times 2}  \\  \\ \bf  \large : \longmapsto \:k =  \frac{15}{4}

Therefore,

Value of k is 15/4 !!!!


MisterIncredible: Good (•‿•)
Similar questions