If the lines xsin^2a + are concurrent where a b c are angles of a triangle
Answers
Answered by
0
Answer:
Step-by-step explanation:
Let α, β and γ be the angles of a triangle; then it holds
sin2α+sin2β+sin2γ=2+2cosαcosβcosγ
If this equals 2, we conclude
cosαcosβcosγ=0
so one of the angles is a right angle.
Proof of the claim
Let's use that γ=π−α−β, so cosγ=−cos(α+β). Then
cos2α+cos2β+cos2γ=cos2α+cos2β+cos2(α+β)=cos2α+cos2β+cos2αcos2β+sin2αsin2β−2sinαsinβcosαcosβ=cos2α+cos2β+1−cos2α−cos2β+2cos2αcos2β−2sinαsinβcosαcosβ=1+2cosαcosβ(cosαcosβ−sinαsinβ)=1−2cosαcosβcosγ
giving the final relation
cos2α+cos2β+cos2γ=1−2cosαcosβcosγ
Now
sin2α+sin2β+sin2γ=3−cos2α−cos2β−cos2γ=2+2cosαcosβcosγ
as claimed at the beginning.
Similar questions