Physics, asked by abhayking98, 7 months ago

If the magnetic field at a distance of 2 cm from an infinite current carrying wire is 10-6 weber/m2, then the value of current in ampere will be:​

Answers

Answered by BrainlyTornado
2

ANSWER:

  • The value of current = 10 A.

GIVEN:

  • Magnetic field from an infinite current carrying wire is 10⁻⁶ weber/m².

  • Distance is 2 cm.

TO FIND:

  • The value of current in Ampere.

EXPLANATION:

 \boxed{ \bold{ \large{ \gray{B =  \dfrac{\mu_oI}{4\pi a}(sin \ \phi_1 + sin \ \phi_{2} )}}}}

The above formula is for calculating magnetic field around a thin straight current carrying conductor.

\sf For\ a\ infinite\ wire,\ \phi_1 = \phi_2=90^{\circ}

 \sf B =  \dfrac{\mu_oI}{4\pi a}(sin \  {90}^{ \circ}  + sin \  {90}^{ \circ}  )

 \sf B=  \dfrac{\mu_oI}{4\pi a}(1  + 1  )

 \sf B =  \dfrac{\mu_oI}{4\pi a}(2)

 \boxed{ \bold{ \large{ \gray{ B =  \dfrac{\mu_oI}{2\pi a}}}}}

The above formula is for calculating magnetic field around a thin straight current carrying conductor of infinite length.

\sf B = 10^6 \ weber\ m^{-2}

\sf a = 2 \ cm = 2\times 10^{-2}\ m

 \sf \mu_o = 4 \pi \times  {10}^{ - 7} \ T\ m \ A^{-1}

 \sf 10^6=  \dfrac{(4\pi \times  {10}^{ - 7})I}{2\pi (2\times 10^{-2})}

 \sf 10^6=  \dfrac{(2\times  {10}^{ - 7})I}{(2\times 10^{-2})}

 \sf 10^6=  \dfrac{( {10}^{ - 7})I}{( 10^{-2})}

 \sf 10^6= ( {10}^{ 5})I

 \sf  \dfrac{10^6}{ {10}^{ 5}} = I

 \sf I = 10\ A

HENCE THE VALUE OF CURRENT = 10 A.


Cynefin: Stupendous ⭐
Similar questions