Physics, asked by tanishkaarora718, 7 months ago

If the mass of a planet is 6 x10²⁶ kg and its radius is 6.4 x 10³ km, what is the estimated acceleration due to gravity on the surface of the planet? *​

Answers

Answered by Anonymous
9

→ To Find :

The Acceleration due to gravity on the Planet's surface.

→ We Know :

Acceleration due to gravity :

\purple{\sf{\underline{\boxed{g = \dfrac{G\:M}{r^{2}}}}}}

Where ,

  • g = Acceleration due to gravity

  • r = Radius of the Planet

  • M = Mass of the planet

  • G = Universal Gravitational Constant

→ Solution :

Value of Universal Gravitational Constant :

\green{\sf{G = 6.67 \times 10^{-11}}}

Given :

  • Mass of the Planet = 6 × 10²⁶ kg

  • Radius of the Planet = 6.4 × 10³ km

Converting 6.4 × 10³ km in m ,we get :

\sf{\Rightarrow 6.4 \times  10^{3} \times 1000 m}

\sf{\Rightarrow 6.4 \times  10^{3} \times 10^{3})m}

[Using the exponential law :

\sf{x^{n} \times x^{m} = x^{n + m}}

\sf{\Rightarrow 6.4 \times 10^{3 + 3} m}

\purple{\sf{\Rightarrow 6.4 \times 10^{6} m}}

Hence , the Radius of the Planet is 6.4 × 10⁶ m.

Using the formula and substituting the values in it , we get :

\purple{\sf{g = \dfrac{G\:M}{r^{2}}}}

\\

\sf{\Rightarrow g = \dfrac{6.67 \times 10^{-11} \times 6 \times 10^{26}}{\left(6.4 \times 10^{6}\right)}}

\\

\sf{\Rightarrow g = \dfrac{6.67 \times 10^{-11} \times 6 \times 10^{26}}{6.4 \times 6.4 \times 10^{6} \times 10^{6}}}

\\

\sf{\Rightarrow g = \dfrac{6.67 \times 10^{-11} \times 6 \times 10^{26}}{40.96 \times 10^{12}}}

\\

\sf{\Rightarrow g = \dfrac{6.67 \times 10^{-11} \times 6 \times 10^{26} \times 10^{-12}}{40.96}}

\\

\sf{\Rightarrow g = \dfrac{6.67 \times 10^{-23} \times 6 \times 10^{26}}{40.96}}

\\

\sf{\Rightarrow g = \dfrac{6.67 \times 6 \times 10^{2}}{40.96}}

\\

\sf{\Rightarrow g = \dfrac{40.02 \times 10^{2}}{40.96}}

\\

\sf{\Rightarrow g = \dfrac{4002}{40.96}}

\\

\sf{\Rightarrow g = 97.7 ms^{-2}}

\\

Hence ,the value of acceleration due to gravity on that planet is 97.7 m/s².

» Additional information :

  • Force = \sf{F = G\dfrac{m_{1}m_{2}}{r^{2}}}

  • First Equation of Motion (under Gravity) = v = u + gt

  • Second Equation of Motion (under Gravity) = h = ut + ½gt²

  • Third Equation of Motion (under Gravity) = v² = u² + 2gh
Similar questions