Science, asked by chetan930, 1 year ago

if the mass of the app of a planet is 8 times the mass of the earth and its radius is the price and the radius of the earth what will be the escape velocity for that planet

Answers

Answered by Anonymous
4
Hey mate!!! ❤❤Here's ur answer!! ❤❤
________________________________

mass \: of \: planet \: M \: = 8 \times mass \: of \: earth \:

 \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 8 \times 6 \times {10}^{24}

radius \: of \: planet \: R= 2 \times radius \: of \: earth \:

 \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 2 \times 6.4 \times {10}^{6}m

g = gravitational \: constant \: = 6.67 \times {10}^{ - 11}n \: {m}^{2} {kg}^{2}

so \: escape \: velocity \: = \sqrt{} \frac{2gm}{r }

escape \: velocity \: = \sqrt{( \frac{2 \times 6.67 \times {10}^{ - 11} \times 8 \times 6 \times {10}^{24} }{2 \times 6.64 \times {10}^{6} } })

 \: \: \: \: \: \: \: = 22.4 km/sec

_________________________________

Question:What is escape velocity?
Answer:Escape velocity of the planet is the velocity thrown at which the object escapes the gravitational potential of the planet.
________________________________

Hope this helps you!!! ^_^
Similar questions