Math, asked by sarthakchawla656, 7 months ago

if the matrix (cosx,sinx,2)(sinx,cosx,-3)(0,0,1)is singular find the general value of x​

Answers

Answered by MaheswariS
4

\textbf{Given:}

\textsf{Matrix is}

\mathsf{\left(\begin{array}{ccc}cosx&sinx&2\\0&2&1\\sinx&cosx&-3\\0&0&1\end{array}\right)\;is\;singular}

\textbf{To find:}

\textsf{General value of x}

\textbf{Solution:}

\mathsf{Since\;\left(\begin{array}{ccc}cosx&sinx&2\\0&2&1\\sinx&cosx&-3\\0&0&1\end{array}\right)\;is\;singular,}

\mathsf{\left|\begin{array}{ccc}cosx&sinx&2\\0&2&1\\sinx&cosx&-3\\0&0&1\end{array}\right|=0}

\textsf{Expanding along the first row, we get}

\mathsf{cosx(cosx-0)-sinx(sinx-0)+2(0-0)=0}

\mathsf{cos^2x-sin^2x=0}

\mathsf{cos\,2x=0}

\boxed{\mathsf{cos\theta=0\;\implies\;\theta=(2n+1)\dfrac{\pi}{2}}}

\implies\mathsf{2x=(2n+1)\dfrac{\pi}{2}\;\;\;n\;\in\;Z}

\implies\boxed{\mathsf{x=(2n+1)\dfrac{\pi}{4}\;\;\;n\;\in\;Z}}

\textbf{Find more:}

Find the general solution of sin 3x = 0​

https://brainly.in/question/14908273

Similar questions