Math, asked by priyankayadav67, 1 month ago

if the matrix
x + 4 x x
x x+4 x
x x x+4
is singular. find x​

Answers

Answered by Tomboyish44
10

Answer:

x = -4/3.

Step-by-step explanation:

We are given that the following matrix . . .

\left[\begin{array}{ccc}\sf x + 4& \sf x&\sf x\\ \sf x & \sf x + 4& \sf x\\ \sf x& \sf x& \sf x + 4\end{array}\right]

. . . is a singular matrix.

Any matrix whose determinant comes out equal to 0 is known as a singular matrix. Therefore, we can say that -

\Longrightarrow \left|\begin{array}{ccc}\sf x + 4& \sf x&\sf x\\ \sf x & \sf x + 4& \sf x\\ \sf x& \sf x& \sf x + 4\end{array}\right| = 0

On expanding the determinant we get,

\Longrightarrow \mathsf{(x + 4) \Big\{ (x+4)(x+4) - (x)(x) \Big\} - x \Big \{ x(x+4) - x(x) \Big \} + x \Big \{ x(x) - x(x+4) \Big\} = 0}

\Longrightarrow \mathsf{(x + 4) \Big\{x^2 + 4x + 4x + 16 - x^2\Big\} - x \Big \{x^2 + 4x - x^2 \Big \} + x \Big \{x^2 - x^2 -4x \Big\} = 0}

\Longrightarrow \mathsf{(x + 4) \Big\{8x + 16 \Big\} - x \Big \{4x \Big \} + x \Big \{-4x \Big\} = 0}

\Longrightarrow \mathsf{ 8x^2 + 16x + 32x + 64 - 4x^2 - 4x^2 = 0}

\Longrightarrow \mathsf{ 8x^2 + 16x + 32x + 64 - 8x^2 = 0}

\Longrightarrow \mathsf{16x + 32x + 64 = 0}

\Longrightarrow \mathsf{48x + 64 = 0}

\Longrightarrow \mathsf{48x = -64}

\Longrightarrow \mathsf{x = \dfrac{-64}{48}}

\Longrightarrow \mathsf{x = \dfrac{-16}{12}}

\Longrightarrow \boxed{\mathbf{x = \dfrac{-4}{3}}}

Verification:

We can substitute x = -4/3 in our matrix to see if this value of x actually results in a singular matrix.

\Longrightarrow \left|\begin{array}{ccc}\sf \dfrac{-4}{3} + 4& \sf \dfrac{-4}{3} &\sf \dfrac{-4}{3} \\ \\ \sf \dfrac{-4}{3} & \sf \dfrac{-4}{3} + 4 & \sf \dfrac{-4}{3} \\ \\ \sf \dfrac{-4}{3} & \sf \dfrac{-4}{3} & \sf \dfrac{-4}{3} + 4\end{array}\right| = 0

\Longrightarrow \left|\begin{array}{ccc}\sf \dfrac{8}{3} & \sf \dfrac{-4}{3} &\sf \dfrac{-4}{3} \\ \\ \sf \dfrac{-4}{3} & \sf \dfrac{8}{3}& \sf \dfrac{-4}{3} \\ \\ \sf \dfrac{-4}{3} & \sf \dfrac{-4}{3} & \sf \dfrac{8}{3}\end{array}\right| = 0

Take -1/3 out since it's a common factor in each row.

\Longrightarrow \Big \{-\dfrac{1}{3} \times -\dfrac{1}{3} \times -\dfrac{1}{3} \Big \} \left|\begin{array}{ccc}\sf -8 & \sf 4 &\sf 4 \\ \\ \sf 4 & \sf -8 & \sf 4 \\ \\ \sf 4 & \sf 4 & \sf -8 \end{array}\right| = 0

\Longrightarrow \Big \{-\dfrac{1}{27} \Big \} \left|\begin{array}{ccc}\sf -8 & \sf 4 &\sf 4 \\ \\ \sf 4 & \sf -8 & \sf 4 \\ \\ \sf 4 & \sf 4 & \sf -8 \end{array}\right| = 0

On expanding the determinant we get,

\Longrightarrow \mathsf{\Big \{-\dfrac{1}{27} \Big \} \Big \{ \Big -8\big\{-8(-8) - 4(4) \big\} - 4 \big\{4(-8) - 4(4) \big\} + 4 \big\{4(4) + 8(4) \big\}\Big \}}

\Longrightarrow \mathsf{\Big \{-\dfrac{1}{27} \Big \} \Big \{ \Big -8\big\{64 - 16 \big\} - 4 \big\{-32 - 16 \big\} + 4 \big\{16 + 32 \big\}\Big \}}

\Longrightarrow \mathsf{\Big \{-\dfrac{1}{27} \Big \} \Big \{ \Big -8\big\{48 \big\} - 4 \big\{-48 \big\} + 4 \big\{48\big\}\Big \}}

\Longrightarrow \mathsf{\Big \{-\dfrac{1}{27} \Big \} \Big \{ \Big -384 + 192 + 192 \Big \}}

\Longrightarrow \mathsf{\Big \{-\dfrac{1}{27} \Big \} \Big \{ \Big -384 + 384 \Big \}}

\Longrightarrow \mathsf{\Big \{-\dfrac{1}{27} \Big \} \Big \{ \Big 0 \Big \}}

\Longrightarrow \mathsf{0}

Hence verified.

Answered by mathdude500
21

Appropriate Question:-

\sf \: If\:the\:matrix \: \left[\begin{array}{ccc}x + 4&x&x\\x&x + 4&x\\x&x &x + 4\end{array}\right] \:is \: singular, \: find \: x \\

\large\underline{\sf{Solution-}}

Given that,

\sf \: \: \left[\begin{array}{ccc}x + 4&x&x\\x&x + 4&x\\x&x &x + 4\end{array}\right] \:is \: singular\\

So,

\implies\sf \:  \left |\begin{array}{ccc}x + 4&x&x\\x&x + 4&x\\x&x &x + 4\end{array}\right |  = 0\\

\boxed{\sf \: OP \: R_1 \:  \to \: R_1 + R_2 + R_3 \: } \\

\sf \:  \left |\begin{array}{ccc}3x + 4&3x + 4&3x + 4\\x&x + 4&x\\x&x &x + 4\end{array}\right |  = 0\\

Take out 3x + 4 common from first row.

\sf \:  (3x + 4)\left |\begin{array}{ccc}1&1&1\\x&x + 4&x\\x&x &x + 4\end{array}\right |  = 0\\

\boxed{\sf \: OP \: C_2 \:  \to \: C_2 - C_1 \: } \\

\sf \:  (3x + 4)\left |\begin{array}{ccc}1&0&1\\x&4&x\\x&0 &x + 4\end{array}\right |  = 0\\

\boxed{\sf \: OP \: C_3 \:  \to \: C_3 - C_1 \: } \\

\sf \:  (3x + 4)\left |\begin{array}{ccc}1&0&0\\x&4&0\\x&0 &4\end{array}\right |  = 0\\

On expanding along first row, we get

\sf \:  (3x + 4)(16 - 0)  = 0\\

\sf \: 16 (3x + 4) = 0\\

\sf \:3x + 4 = 0\\

\sf \:3x =  - 4\\

\implies\sf \: x \:  = \:   - \:  \dfrac{4}{3}

Similar questions