Math, asked by claydena425, 2 months ago

If the mean of five values is 9.2 and four of the values are 6, 9, 14 and, 8 find the fifth value.

Answers

Answered by AestheticSoul
3

Given :

• Mean of five values = 9.2

• Four out of five values are given :-

  • 6, 9, 14 and 8

To find :

• Fifth value

Solution :

Let us assume the fifth value as x.

Formula to find mean = Sum of all the terms ÷ Number of terms

→ Sum of all the terms = 6 + 9 + 14 + 8 + x

→ Sum of all the terms = 37 + x

→ Number of terms = 5

Substituting the given values :-

→ 9.2 = (37 + x)/5

→ 9.2 × 5 = 37 + x

→ 46 = 37 + x

→ 46 - 37 = x

→ 9 = x

→ The value of x = 9

Therefore, the fifth value is 9

━━━━━━━━━━━━━━━━━━━━━━━━━

Know MorE :

\boxed {\begin{minipage}{9.2 cm}\\  \dag \: \underline{\Large\bf Formulas\:of\:Statistics} \\ \\ \bigstar \: \underline{\rm Mean:} \\ \\ \bullet\sf M=\dfrac {\Sigma x}{n} \\ \bullet\sf M=a+\dfrac {\Sigma fy}{\Sigma f} \\ \\ \bullet\sf M=A +\dfrac {\Sigma fy^i}{\Sigma f}\times c \\ \\ \bigstar \: \underline{\rm Median :} \\ \\ \bullet\sf M_d=\dfrac {n+1}{2} \:\left[\because n\:is\:odd\:number\right] \\ \bullet\sf M_d=\dfrac {1}{2}\left (\dfrac {n}{2}+\dfrac {n}{2}+1\right)\:\left[\because n\:is\:even\:number\right] \\ \\ \bullet\sf M_d=l+\dfrac {m-c}{f}\times i \\ \\ \bigstar \: {\boxed{\sf M_0=3M_d-2M}}\end {minipage}}

Similar questions