Math, asked by TEJESH1326, 1 year ago


if the mean of p, 1/p is q, then the mean of p3, 1/p^3 is
1) 8q^3- 3q
2) 8q^3- 3q/2
3) q^3 + 3
4) 4q^3- 3q​

Answers

Answered by MaheswariS
27

Answer:

Mean of p^3\:and\:\frac{1}{p^3}=4q^3-3q

option(4) is correct

Step-by-step explanation:

Formula used:

(a+b)^3=a^3+b^3+3ab(a+b)

a^3+b^3=(a+b)^3-3ab(a+b)

Given:

The mean of p\:and\:\frac{1}{p} is q

Then

\frac{p+\frac{1}{p}}{2}=q

p+\frac{1}{p}=2q

Now ,

Mean of p^3\:and\:\frac{1}{p^3}

=\frac{p^3+\frac{1}{p^3}}{2}

=\frac{p^3+(\frac{1}{p})^3}{2}

=\frac{(p+\frac{1}{p})^3-3.p.\frac{1}{p}(p+\frac{1}{p})}{2}

=\frac{(2q)^3-3(2q)}{2}

=\frac{8q^3-3(2q)}{2}

=4q^3-3q

Answered by amitnrw
6

Answer:

4Q³ - 3Q

Step-by-step explanation:

if the mean of p, 1/p is q, then the mean of p3, 1/p^3 is

Mean of P & 1/P = ( P + 1/P)/2

Q = ( P + 1/P)/2

2Q = (P + 1/P)

Taking cube both side

(2Q)³ = (P + 1/P)³

=> 8Q³ = P³ + 1/P³  + 3P(1/P)( P + 1/P)

=> 8Q³ = P³ + 1/P³ + 3(2Q)

=> P³ + 1/P³ = 8Q³ - 6Q

Dividing by 2 both sides

=> (P³ + 1/P³)/2 = 4Q³ - 3Q

=> Mean of P³ + 1/P³ = 4Q³ - 3Q

option 4 is correct

Similar questions