if the mean of the following distribution is 27 find the value of P
classes 0-10 10 - 20 20- 30 30 - 40 40-50
frequency 8 p 12 13 10
Answers
STATISTIC PROBLEM : FIND THE VALUE OF " P ".
- There are three methods for solving the problems of Statistics :
1) By Direct Method
2) By Assumed mean method and
3) By Step derivation method
- Me is gonna to solve or find the value of "P" by
" Step deviation method ".
Classes Frequency ( fi ) xi ui = xi - a/h fiui
0-10 8 5 -2 -16
10-20 P 15 -1 -P
20-30 12 25 ⇒ ( a ) 0 0
30-40 13 35 1 13
40-50 10 45 2 20
_______ _______
∑fi=43+P ∑fiui = 17-P
xi = upper limit + lower line
ui = xi - assumed mean ( a ) / h
h = upper limit - lower limit
= 20 - 10 = 10
fiui = frequency given × ui
Formula : = a + h { ∑fiui / ∑fi }
Given mean () = 27
27 = 25 + 10 [ (17 - p) / (43 + p ) ]
27- 25 = 10 [ (17 - p) / (43 + p ) ]
2 / 10 = (17 - p) / (43 + p )
86 + 2p = 170 - 10 p
12 p = 84
P = 84 / 12
P = 7
Hence, the value of " P " = 7...
Answer..
7
0-10 8 5 -2 -16
10-20 P 15 -1 -P
20-30 12 25 ⇒ ( a ) 0 0
30-40 13 35 1 13
40-50 10 45 2 20
fi=43+P fiui = 17-P
xi = upper limit and
lower line
(ui = xi )( assumed mean ( a ) / h)
(h = upper limit (lower limit)
( 20 - 10 = 10)
frequency given × ui
Formula : \overline{x}
x
= a + h { ∑fiui / ∑fi }
Given mean (\overline{x} x ) = 27
27 = 25 + 10 [ (17 - p) / (43 + p ) ]
27- 25 = 10 [ (17 - p) / (43 + p ) ]
2 / 10 = (17 - p) / (43 + p )
86 + 2p = 170 - 10 p
12 p = 84
P = 84 / 12
P = 7