Math, asked by Anonymous, 26 days ago

If the mean of the following frequency distribution is 65.6. Find the missing frequencies f1 and f2 by using assumed mean method.

ᴄʟᴀss ғʀᴇǫᴜᴇɴᴄʏ
10-30 5
30-50 8
50-70 f1
70-90 20
90-110 f2
110-130 2
ᴛᴏᴛᴀʟ 50​

Answers

Answered by BrainlyTwinklingstar
6

Answer

Here we are provided with mean of the given frequency is 65.6

we know,

\sf 5 + 8 + f_1 + 20 + f_2 + 2 = 50

\sf 35 + f_1+ f_2 +  = 50

 \sf f_2  =15 - f_1 \:  \:  \:  \: ...(1)

Firstly we have to prepare a Frequency distribution table,

\begin{gathered} \boxed{\begin{array}{|c|c|c|c|c|}\cline{1-5}\bf Class&\bf Frequency (f_i)&\bf class \: mark (x_i) & \bf d_i = (x_i - A)& \bf d_ix_i\\\cline{1-5}\sf 10-39&\sf 5&\sf20 & \sf -40 & \sf -200\\\cline{1-5}\sf 30-50&\sf 8&\sf 40& \sf -20 & \sf -160\\\cline{1-5}\sf 50-70&\sf f_1 &\sf 60 & \sf 0 & \sf 0\\\cline{1-5}\sf 70-90&\sf 20& \sf 80 & \sf 20 & \sf 400\\\cline{1-5}\sf 90 - 110&\sf 15 - f_1&\sf 100 & \sf 40 & \sf 600 - 40f_1\\\cline{1-5}\sf 110-130&\sf 2& \sf 120 & \sf 60 & \sf 120 \\\cline{1-5}\sf &\sf \sum f_i= 50& & & \sf \sum f_id_i = 760 - 40f_1\\\cline{1-5}\end{array}}\end{gathered}

By using Assume mean method that is,

 \boxed{ \sf \overline{x} = A + \dfrac{\sum f_id_i}{\sum f_i}}

According to the question,

A = 60

Σf\sf _{i}x\sf _{i} = 760 - 40f\sf _{i}

Σf\sf _{i} = 50

mean = 65.6

By substituting all the given values in the formula,

 \dashrightarrow \:  \: \sf \overline{x} = A + \dfrac{\sum f_id_i}{\sum f_i}

 \dashrightarrow \:  \: \sf 65.6 = 60 + \dfrac{760 - 40f_1}{50}

 \dashrightarrow \:  \: \sf 65.6 - 60 =  \dfrac{760 - 40f_1}{50}

 \dashrightarrow \:  \: \sf 5.6  \times 50 =  760 - 40f_1

 \dashrightarrow \:  \: \sf 280 =  760 - 40f_1

 \dashrightarrow \:  \: \sf 760 -  280 =  40f_1

 \dashrightarrow \:  \: \sf 480 =  40f_1

 \dashrightarrow \:  \: \sf f_1 =  \dfrac{480}{40}

 \dashrightarrow \:  \:  \boxed{\sf f_1= 12}

now, substituting f₁ = 12 in eq (1),

 \dashrightarrow \:  \: \sf f_{2}=15 -  f_1

 \dashrightarrow \:  \: \sf f_{2}=15 -  12

 \dashrightarrow \:  \: \boxed{ \sf f_{2}=3}

Thus, f₁ = 12 and f₂ = 3

Answered by mathdude500
6

\large\underline\purple{\bold{Solution :-  }}

It is given that,

:  \implies \tt \:  \red{ \bf \: \sum f_i= 50}

:  \implies \tt \: 5 + 8 + f_1 + 20 + f_2 + 2 = 50

:  \implies \tt \: 35 + f_1 + f_2 = 50

:  \implies \tt \:  \boxed{ \purple{ \bf \: f_1 + f_2 = 15}} -  - (i)

Now,

Prepare a frequency distribution table as follow

\begin{gathered}\begin{gathered} \boxed{\begin{array}{|c|c|c|c|c|}\bf Class&\bf Frequency (f_i)&\bf class \: mark (x_i) & \bf d_i = (x_i - A)& \bf f_id_i\\\sf 10-30&\sf 5&\sf20 & \sf -40 & \sf -200 \\  \sf 30-50&\sf 8&\sf 40& \sf -20 & \sf -160\\\sf 50-70&\sf f_1 &\sf 60 & \sf 0 & \sf 0\\\sf 70-90&\sf 20& \sf 80 & \sf 20 & \sf 400\\\sf 90 - 110&\sf f_2&\sf 100 & \sf 40 & \sf  40f_2\\\sf 110-130&\sf 2& \sf 120 & \sf 60 & \sf 120 \\\sf &\sf \sum f_i= 50& & & \sf \sum f_id_i = 160  +  40f_2\\\end{array}}\end{gathered} \end{gathered}

Now, we have

:  \implies \tt \:  \red{\sum f_i= 50}

:  \implies \tt \:  \blue{A = 60}

:  \implies \tt \:  \purple{\sum f_id_i= 160 + 40f_2}

:  \implies \tt \:  \green{ \overline{x} \:  = 65.6}

Now,

We know that,

:  \implies \tt \: \boxed{ \red{ \bf \overline{x} = A + \dfrac{\sum f_id_i}{\sum f_i}}}

:  \implies \tt \: 65 .6 \:  = 60 + \dfrac{160 + 40f_2}{50}

:  \implies \tt \: 5.6 = \dfrac{160 + 40f_2}{50}

:  \implies \tt \: 280 = 160 + 40f_2

:  \implies \tt \: 40f_2 = 120

:  \implies  \boxed{ \red{\tt \: f_2 = 3}}

On substituting the value in equation (i), we get

:  \implies \tt \: 3 + f_1 \:  = 15

:  \implies \tt \: f_1 = 15 - 3

:  \implies \boxed{ \purple{ \bf \: f_1 = 12}}

Similar questions