Math, asked by mvramana2398, 1 year ago

If the mean of two numbers is 30 and the geometric mean is 24 then what will be these two numbers

Answers

Answered by kartik2507
7

Answer:

the numbers are 12 and 48

Step-by-step explanation:

let the numbers be a and b

mean = (a+b)/2 = 30

geometric mean = √a×b = 24

 \frac{a + b}{2}  = 30 \\ a + b = 60 \\ a = 60 - b \:  \:  \:  \:  \:  \:  \:  \: equ \: (1)  \\  \\ geometric \: mean\\  \sqrt{ab}  = 24 \\ squaring \: on \: both \: sides \\ ab = 24 \times 24 \\ ab = 576 \\ substitute \: a \: from \: equ \: (1) \\ (60 - b) \times b = 576 \\ 60b -  {b}^{2}  - 576 = 0 \\  {b}^{2}  - 60b + 576 = 0 \\  {b}^{2}  - 12b - 48b + 576 = 0 \\ b(b - 12) - 48(b - 12) = 0 \\ (b - 12)(b - 48) = 0 \\ b - 12 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \: b - 48 = 0 \\ b = 12 \:  \: or \: b = 48 \\ substitute \: b \: in \: equ \: (1) \\ a = 60 - b \\ a = 60 - 12 = 48

Similar questions