Math, asked by mvramana2398, 10 months ago

If the mean of two numbers is 30 and the geometric mean is 24 then what will be these two numbers

Answers

Answered by kartik2507
7

Answer:

the numbers are 12 and 48

Step-by-step explanation:

let the numbers be a and b

mean = (a+b)/2 = 30

geometric mean = √a×b = 24

 \frac{a + b}{2}  = 30 \\ a + b = 60 \\ a = 60 - b \:  \:  \:  \:  \:  \:  \:  \: equ \: (1)  \\  \\ geometric \: mean\\  \sqrt{ab}  = 24 \\ squaring \: on \: both \: sides \\ ab = 24 \times 24 \\ ab = 576 \\ substitute \: a \: from \: equ \: (1) \\ (60 - b) \times b = 576 \\ 60b -  {b}^{2}  - 576 = 0 \\  {b}^{2}  - 60b + 576 = 0 \\  {b}^{2}  - 12b - 48b + 576 = 0 \\ b(b - 12) - 48(b - 12) = 0 \\ (b - 12)(b - 48) = 0 \\ b - 12 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \: b - 48 = 0 \\ b = 12 \:  \: or \: b = 48 \\ substitute \: b \: in \: equ \: (1) \\ a = 60 - b \\ a = 60 - 12 = 48

Similar questions