Math, asked by kuldeepkundu, 1 year ago


If the measure of an exterior angle of a triangle is (3x - 10) and the measure of the interior opposite angles are 25 and (x+15), find and hence the value of all the three angles,​

Answers

Answered by Anonymous
122

AnswEr :

\bold{Given} \begin{cases}  \underline{ \footnotesize\sf{ \star \:  \: Angles\:of \: a \:  Triangle}} \\ \sf{Exterior  \: Angle=(3x  - 10)\degree} \\ \sf{Interior \:  Angle (I_1)=25 \degree}  \\  \sf{Interior \:  Angle (I_2)=(x +15)\degree}\end{cases}

Accrⁿ to the Exterior Angle Theorem :

⇒ Exterior Angle = Sum of Opposite Interior Angles

⇒ Exterior Angle = I₁ + I₂

⇒ (3x - 10) = 25 + (x + 15)

⇒ 3x - 10 = 25 + x + 15

⇒ 3x - x = 40 + 10

⇒ 2x = 50

⇒ x = \cancel\dfrac{50}{2}

\boxed{ \sf x = 25}

_________________________________

Exterior Angle :

» (3x - 10) = (3 × 25 - 10) = (75 - 10) = 65°

Interior Angle :

» 25°

Interior Angle :

» (x + 15) = (25 + 15) = 40°

Angles are 65°, 25° and 40° respectively.


Anonymous: good job
Answered by Anonymous
73

Solution

Given angles are 25°,(3x - 10)° and (x + 15)°

According to Exterior Angle Theorem,

The exterior angle is equal to the sum of opposite interior angles

3x - 10 = (x + 15) + 25

→ 3x - 10 = x + 40

→ 3x - x = 40 + 10

→ 2x = 50

→ x = 25°

Now,

  • 3x - 10 = 3(25) - 10 = 75 - 10 = 65°

  • x + 15 = 25 + 15 = 40°

Thus,the angles are 40°,25° and 65°


Anonymous: Fab answer
Similar questions