Physics, asked by sakshisidhlingdhule, 1 year ago

if the measured values of two quantities are A+-deltaA and B+-deltaB,delta and deltaB being the mean absolute errors .what is the maximum possible error in A+-B? show that if z= A/B
deltaZ/Z=deltaA/A+deltaB/B​

Answers

Answered by sonawaneshobha4
13

Answer:

Explanation:

Here is your answer

Attachments:
Answered by babundrachoubay123
1

Answer:

L.H.S = R.H.S

Explanation:

According to this question

We have been given that

Z = \frac{A}{B}

So, we can add both side maximum possible error

Z \pm \delta Z = \frac{A \pm \delta A} {B \pm \delta B}

Z \pm \delta Z = (A \pm \delta A)\times (B \pm \delta B)^{-1}

Z[1 \pm (\frac{\delta Z}{Z})] = A[1 \pm (\frac{\delta A}{A}]\times B^{-1}[(1 \pm \frac{\delta B}{B})^{-1}]

Z[1 \pm (\frac{\delta Z}{Z})] = \frac{A}{B}[1 \pm (\frac{\delta A}{A}]\times [(1 \pm \frac{\delta B}{B})^{-1}]

From question Z = \frac{A}{B}

then, [1 \pm (\frac{\delta Z}{Z})] = [1 \pm (\frac{\delta A}{A}]\times [(1 \pm \frac{\delta B}{B})^{-1}]

\pm 1 \pm (\frac{\delta Z}{Z}) = \pm 1 \pm \frac{\delta A}{A}\ \pm \frac{\delta B}{B}\ \pm \frac{\delta A\times \delta B}{AB}

\pm (\frac{\delta Z}{Z}) = \pm \frac{\delta A}{A}\ \pm \frac{\delta B}{B}\ \pm \frac{\delta A\times \delta B}{AB}

\frac{\delta A\times \delta B}{AB} value is very negligible so we can remove that.

\pm (\frac{\delta Z}{Z}) = \pm \frac{\delta A}{A}\ \pm \frac{\delta B}{B}

Hence, proved

Similar questions