Math, asked by Anonymous, 2 months ago

If the median of 60 observations, given below is 28.5. Find the values of ‘x’ and ‘y’.
 \begin {gathered}\boxed{\boxed {\begin{array}{ |c |c|} \sf{\bf{\underline{Class    \: Interval}}}&\sf{\bf{\underline{Frequency}}} \\  \\  \sf{0 - 10} & \sf{5}   \\ \\ \sf{10 - 20}&  \sf{x} \\  \\ \sf{20 - 30}& \sf{20} \\  \\ \sf{30-40}&\sf{15} \\  \\ \sf{40-50}&\sf{y} \\  \\ \sf{50-60}&\sf{5}\end{array}}}\end{gathered}
Want well explained answer

Don't spam !​

Answers

Answered by mddilshad11ab
239

\sf\small\underline{Given:-}

\tt{\implies Median\:of\:60\: observation=28.5}

\tt{\implies Sum\:of\: frequency=60}

\sf\small\underline{To\:Find:-}

\tt{\implies The\: value\:of\:x\: and\:y=?}

\sf\small\underline{Solution:-}

By Applying formula we have to set up equation then calculate the value of x , y by solving equations.

\sf\small\underline{As\:per\: referred\: attachment:-}

\tt{\implies M=l+\dfrac{N/2-F}{f}\times\:i}

\tt{\implies M=28.5\:\:,l=20\:\:,i=10}

\tt{\implies f=20\:\:,F=5+x\:\:,N/2=30}

  • By substituting value we get:-

\tt{\implies 28.5=20+\dfrac{30-5-x}{20}\times\:10}

\tt{\implies 28.5=20+\dfrac{25-x}{20}\times\:10}

\tt{\implies 28.5=20+\dfrac{250-10x}{20}}

\tt{\implies 28.5-20=\dfrac{250-10x}{20}}

\tt{\implies 8.5*20=250-10x}

\tt{\implies 170=250-10x}

\tt{\implies 10x=250-170}

\tt{\implies 10x=80}

\tt{\implies x=8}

\bf{\implies sum\:of\: frequency=60}

\tt{\implies 45+x+y=60}

\tt{\implies x+y=60-45}

\tt{\implies x+y=15----(i)}

  • Putting the value of x= 8 in eq (i)

\tt{\implies 8+y=15}

\tt{\implies y=15-8}

\tt{\implies y=7}

\sf\small\underline\pink{Hence,\:the\: missing\: frequency\:=\:8\:and\:7:-}

Attachments:
Answered by Anonymous
105

Answer:

x=8, y=7

Step-by-step explanation:

 \sf \: Median = 28.5 \\  \tt \:  \: n = ∑f_{(1) } = 60 \\  \tt \:  \red{n =  \frac{60}{2}  = 30} \\  \sf \: median \: class = 20 - 30 \\  \green{ \tt \: l = 20,h = 10,f = 20,c.f = 5 + x} \\  \sf \:So, Median = l( \frac{ \frac{n}{2}  - cf}{f}) h \\  \leadsto \tt \: 28.5 = 20 +  \frac{25 - x}{2}  \\ \leadsto \tt28.5  -  20 =  \frac{25 - x}{2} \\  \leadsto \tt8.5 \times 2 = 25  - x \\ \leadsto \tt  \purple {x = 25 - 17 =  \bold{8}} \\   \\ \tt  \: and \: so, \: 45 + x + y = 60 \\  \tt \:  \leadsto \: y = 60 - (45 + 8) \\  \tt \leadsto \:  \blue{y = 60 - 53 =  \bold{7}}

Similar questions