Math, asked by manideep1545, 1 year ago

If the median of the distribution given below is 14.4, find the values of x and y.

Answers

Answered by ANTONYSIMEON
14

Answer:

Solution :-


I think there is a mistake done while typing of this question. I suppose 14.4 is the Median of the given distribution.


 Class Interval          Frequency          Cumulative Frequency


    0 - 6                           4                                  4


    6 - 12                         x                                4 + x


   12 - 18                        5                                9 + x


   18 - 24                        y                                9 + x + y


    24 - 30                       1                               10 + x + y

______________________________________________

                                     20                                                 

______________________________________________


10 + x + y = 20


x + y = 20 - 10


x + y = 10


Median = 14.4 


So, Median class is 12 - 18


Median = l + [(N/2 - cf)*i]/f


l = Lower limit of the Median Class = 12


Class Interval = i = 6


Cumulative Frequency (cf) of the class before the Median Class = 4 + x


N = 20


N/2 = 20/2 = 10


f = frequency of the Median Class = 5


⇒ Median = l + [(N/2 - cf)*i]/2


⇒ 14.4 = 12 + {10 - (4 + x)*6]/5


⇒ 14.4 - 12 = {(10 - 4 - x)*6}/5


⇒ 2.4 = {(6 - x)*6}/5


⇒ 2.4 = (36 - 6x)/5


⇒ 2.4*5 = 36 - 6x


⇒ 12 = 36 - 6x


⇒ - 6x = 12 - 36


 - 6x = - 24


⇒ 6x = 24


x = 24/6


x = 4


Since, x + y = 10


4 + y = 10


y = 10 - 4


y = 6


So, the value of x is 4 and the value of y is 6.

Similar questions