Math, asked by luffymanas, 11 months ago

if the median of the distribution given below is 27 find the value of x and y class interval 0-10 10-20 20 30 30 40 40-50 50-60 60-70 70 80 frequency 7 10 x 13 Y 10 14 9​

Answers

Answered by amitnrw
4

Answer:

2x = 145 + 5y

Step-by-step explanation:

if the median of the distribution given below is 27 find the value of x and y class interval 0-10 10-20 20 30 30 40 40-50 50-60 60-70 70 80 frequency 7 10 x 13 Y 10 14 9​

             f               cf

0 - 10     7             7

10-20     10           17

20-30    x             17+x

30-40    13           30 +x

40-50    y             30+x+y

50-60    10           40+x+y

60-70     14          54+x+y

70-80     9            63+x+y

Median = 27 => Median group is 20 -30

Median = L +   ((n/2) − B)/G )  × w

L is the lower class boundary of the group containing the median  = 20

n is the total number of values  =  63+x+y

B is the cumulative frequency of the groups before the median group  = 17

G is the frequency of the median group  = x

w is the group width = 10

27 = 20 +  ( (63+x+y)/2 - 17) /x  * 10

7x = (29 + x + y)5

2x = 145 + 5y

Lack of data to find x & y

Similar questions