If the median of the distribution given below is 27 , find the missing frequencies x and y
Attachments:
Answers
Answered by
3
C.I f c.f
0 - 10 5 5
10 - 20 x 5+x
20 - 30 20 25+x
30 - 40 14 39+x
40 - 50 y 39+x+y
50 - 60 8 47+x+y.
Total 68.
here, 47+x+y =68 _____ (1)
Given that, median = 27.
Hence the median class is 20 - 30.
∴l=20,
2
m
=
2
68
=34,c.f=5+x,h=10,f=20.
we know, median =l+
f
2
m
−c.f
×h
27=20+
20
34−(5+x)
×10
27=20+
2
34−5−x
⇒54=40+34−5−x.
⇒=69−x.
⇒x=69−54
⇒x=15
from (1), y = 68-47-15 = 6
Hence x = 15, y = 6
Similar questions