Math, asked by vishal25185, 5 hours ago

If the mid-points of the consecutive sides of a quadrilateral are joined, then show (by using vectors) that they form a parallelogram.​

Answers

Answered by deepraj26101
1

Answer:

Step-by-step explanation:

Attachments:
Answered by isha00333
0

Given: If the mid-points of the consecutive sides of a quadrilateral are joined.

To show: (by using vectors) that the midpoints form a parallelogram.​

Solution:

Assume that, ABCD is the quadrilateral and M,N,O,P are the mid points of the sides AB, BC, CD, DA respectively.

Know that, position vectors of M,N,O,P are \[\frac{{\overrightarrow a  + \overrightarrow b }}{2},\frac{{\overrightarrow b  + \overrightarrow c }}{2},\frac{{\overrightarrow c  + \overrightarrow d }}{2},\frac{{\overrightarrow d  + \overrightarrow a }}{2}\]respectively.

Understand that to show that MNOP is a parallelogram, \[\overrightarrow {MN}  = \overrightarrow {PO} ,\overrightarrow {MP}  = \overrightarrow {NO} \]should be proved first.

Therefore, Prove that, \[\overrightarrow {MN}  = \overrightarrow {PO} \]

\[\begin{array}{l}\overrightarrow {MN}  = \overrightarrow {PO} \\ \Rightarrow \frac{{\overrightarrow b  + \overrightarrow c }}{2} - \frac{{\overrightarrow a  + \overrightarrow b }}{2} = \frac{{\overrightarrow c  + \overrightarrow d }}{2} - \frac{{\overrightarrow d  + \overrightarrow a }}{2}\end{array}\]

\[ \Rightarrow \frac{{\overrightarrow b  + \overrightarrow c  - \overrightarrow a  - \overrightarrow b }}{2} = \frac{{\overrightarrow c  + \overrightarrow d  - \overrightarrow d  - \overrightarrow a }}{2}\]

\[\begin{array}{l} \Rightarrow \frac{{\overrightarrow c  - \overrightarrow a }}{2} = \frac{{\overrightarrow c  - \overrightarrow a }}{2}\\ \Rightarrow LHS = RHS\end{array}\]

\[ \Rightarrow \overrightarrow {MN} ||\overrightarrow {PO} \]

Prove that, \[\overrightarrow {MP}  = \overrightarrow {NO} \].

\[\begin{array}{l}\overrightarrow {MP}  = \overrightarrow {NO} \\ \Rightarrow \frac{{\overrightarrow d  + \overrightarrow a }}{2} - \frac{{\overrightarrow a  + \overrightarrow b }}{2} = \frac{{\overrightarrow c  + \overrightarrow d }}{2} - \frac{{\overrightarrow b  + \overrightarrow c }}{2}\end{array}\]

\[ \Rightarrow \frac{{\overrightarrow d  + \overrightarrow a  - \overrightarrow a  - \overrightarrow b }}{2} = \frac{{\overrightarrow c  + \overrightarrow d  - \overrightarrow b  - \overrightarrow c }}{2}\]

\[\begin{array}{l} \Rightarrow \frac{{\overrightarrow d  - \overrightarrow b }}{2} = \frac{{\overrightarrow d  - \overrightarrow b }}{2}\\ \Rightarrow LHS = RHS\end{array}\]

\[ \Rightarrow \overrightarrow {MP} ||\overrightarrow {NO} \]

Observe that, \[ \overrightarrow {MP} ||\overrightarrow {NO} \]and \[  \overrightarrow {MN} ||\overrightarrow {PO} \].

Therefore, the MNOP is a parallelogram.

Hence proved.

Similar questions