Math, asked by muskuakshay1, 16 days ago

if the mid points of the sides BC,CA,AB,of a triangle ABC are (-1,3),(-2,4),(2-5) then the length of the median through vertex A isls​

Answers

Answered by Anonymous
3

 \boxed { \overline{ \underline{\tt{\pink{ \underline{ \overline{ QueSTiOn}}}}}}}

\large \pmb{\bf{\underline{\gray{Solution :-}}}}

 \sf {Assume\:\:\displaystyle \lim_{x\to\infty}\left ( \dfrac{x!}{x} \right )^{\dfrac{1}{x}} = L}

Take log both sides, we get

 \sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( \dfrac{x!}{x} \right )}

 \pmb{\sf{\gray{ Put\ value\ of\ x! }}}

 \sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( \dfrac{x(x-1)!}{x} \right )}

 \sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( (x-1)! \right )}

 \sf {ln(L)=\displaystyle \lim_{x\to\infty} \dfrac{ln \left ( (x-1)! \right )}{x}}

\pmb{\tt{Multiplying \ with\ ( x - 1 )\ in\ numerator\ and\ denominator\, we\ get\ }}

\sf {ln(L)=\displaystyle \lim_{x\to\infty} (x-1)\dfrac{ln \left ( (x-1)! \right )}{x(x-1)}}

 \pmb{\sf{We\ know\ that}}

 \sf {\displaystyle \lim_{x\to\infty} \dfrac{ln \left ( x! \right )}{x}=\infty}

 \sf {ln(L)=(\infty) \displaystyle \lim_{x\to\infty} \dfrac{x-1}{x}}

 \sf {ln(L)=(\infty) \displaystyle \lim_{x\to\infty} \left(1-\dfrac{1}{x}\right)}

Put value of limits,

 \sf {ln(L)=(\infty) \left(1-\dfrac{1}{\infty}\right)}

 \sf {ln(L)=(\infty) \left(1-0\right)}

 \sf {ln(L)=\infty}

 \sf{L=e^{\infty}}

 \sf{L=\infty}

Answered by artikeshri9
1

Answer:

The force is the product of mass and acceleration. its SI unit is Newton and CGS unit is dyne. The CGS unit of force is equal to SI unit of force. Hence, The relation between SI and CGS unit of force is the CGS unit of force is equal to SI unit of force

Step-by-step explanation:

plz mark me as a brainliest

Similar questions