Math, asked by aazharkhan442, 7 months ago

If the midpoint of a segment joining the points ( 3 , - 1 ) and (m , n ) is ( - 1 , 3 ) then find, ( m , n )​

Answers

Answered by Arceus02
4

We're given,

\longrightarrow \sf{A(3, -1) = ({x}_{1}, {y}_{1})}

\longrightarrow \sf{P(-1, 3) = (\alpha, \beta)}

\longrightarrow \sf{B(m,n) = ({x}_{2}, {y}_{2})}

P is the mid-point of line segment AB

\sf{\\}

By midpoint formula, we know that if \sf{P(\alpha, \beta)} is the mid-point of line segment AB, where \sf{A({x}_{1},{y}_{1})} and \sf{B({x}_{2},{y}_{2})}, then

\quad \quad \bullet \sf{\alpha = \dfrac{{x}_{1} + {x}_{2}}{2}}

\quad \quad \bullet \sf{\beta = \dfrac{{y}_{1} + {y}_{2}}{2}}

\sf{\\ \\}

So, for alpha,

\longrightarrow \sf{\alpha = \dfrac{{x}_{1} + {x}_{2}}{2}}

\longrightarrow \sf{ -1 = \dfrac{3 + m}{2}}

\longrightarrow \sf{ -2 = 3 + m}

\longrightarrow \underline{\sf{m = -5}}

\sf{\\ \\}

For beta,

\longrightarrow \sf{\beta = \dfrac{{y}_{1} + {y}_{2}}{2}}

\longrightarrow \sf{3 = \dfrac{-1 + n}{2}}

\longrightarrow \sf{6 = -1 + n}

\longrightarrow \underline{\sf{n = 7}}

\sf{\\ \\}

Hence the required answer is,

\longrightarrow \underline{\underline{\sf{B = (-5,7)}}}

Similar questions