Math, asked by aqibshaikh9307, 5 days ago

If the midpoint of the line segment joining (4a,2b-3) and (-4,3b) is (4,-3a); then the value of a and b is .
a.-3 , -3
b.-3 , 3
c.3 , -3
d.3 , 3

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

  • The midpoint of the line segment joining (4a,2b-3) and (-4,3b) is (4,-3a).

We know,

Mid-point formula

Let P(x₁, y₁) and Q(x₂, y₂) be two points in the coordinate plane and R(x, y) be the mid-point of PQ. Then, the coordinates of R (x, y) will be:

\sf\implies \boxed{\tt{ (x, \: y) = \bigg(\dfrac{x_{1}+x_{2}}{2}, \dfrac{y_{1}+y_{2}}{2}\bigg)}}

Here,

\red{\rm :\longmapsto\:x = 4}

\red{\rm :\longmapsto\:x_1 = 4a}

\red{\rm :\longmapsto\:x_2 = -  4}

\red{\rm :\longmapsto\:y =  - 3a}

\red{\rm :\longmapsto\:y_1 = 2b - 3}

\red{\rm :\longmapsto\:y_2 =  3 b}

So, on substituting the values in above formula, we get

\rm :\longmapsto\:(4, \:  - 3a) = \bigg(\dfrac{4a - 4}{2}, \: \dfrac{2b - 3 + 3b}{2} \bigg)

\rm :\longmapsto\:(4, \:  - 3a) = \bigg(2a - 2, \: \dfrac{5b - 3}{2} \bigg)

So, on comparing we get

\rm :\longmapsto\:2a - 2 = 4

\rm :\longmapsto\:2a = 4 + 2

\rm :\longmapsto\:2a = 6

\rm \implies\:\boxed{\tt{  \: a \:  =  \: 3 \: }}

Now,

\rm :\longmapsto\:\dfrac{5b - 3}{2}  =  - 3a

\rm :\longmapsto\:\dfrac{5b - 3}{2}  =  - 3 \times 3

\rm :\longmapsto\:\dfrac{5b - 3}{2}  =  - 9

\rm :\longmapsto\:5b - 3  =  - 18

\rm :\longmapsto\:5b  =  - 18 + 3

\rm :\longmapsto\:5b  =  - 15

\rm \implies\:\boxed{\tt{  \: b \:  =  \:  -  \: 3 \: }}

So, we have

 \red{\begin{gathered}\begin{gathered}\rm :\longmapsto\:\begin{cases} &\sf{a \:  =  \: 3}  \\ \\ &\sf{b \:  =  \:  -  \: 3} \end{cases}\end{gathered}\end{gathered}}

Hence, option (c) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

1. Section formula :-

Let P(x₁, y₁) and Q(x₂, y₂) be two points in the coordinate plane and R(x, y) be the point which divides PQ internally in the ratio m₁ : m₂. Then, the coordinates of R will be:

\sf\implies\boxed{\tt{  R = \bigg(\dfrac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}}, \dfrac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}}\bigg)}}

2. Mid-point formula

Let P(x₁, y₁) and Q(x₂, y₂) be two points in the coordinate plane and R(x, y) be the mid-point of PQ. Then, the coordinates of R will be:

\sf\implies\boxed{\tt{  R = \bigg(\dfrac{x_{1}+x_{2}}{2}, \dfrac{y_{1}+y_{2}}{2}\bigg)}}

3. Centroid of a triangle :-

Centroid of a triangle is the point where the medians of the triangle meet.

Let A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) be the vertices of a triangle. Let R(x, y) be the centroid of the triangle. Then, the coordinates of R will be:

\sf\implies\boxed{\tt{  R = \bigg(\dfrac{x_{1}+x_{2}+x_{3}}{3}, \dfrac{y_{1}+y_{2}+y_{3}}{3}\bigg)}}

4. Distance Formula :-

Let P(x₁, y₁) and Q(x₂, y₂) be two points in the coordinate plane, the distance PQ is

\rm \implies\:\boxed{\tt{ PQ \:  =  \: \sqrt{ {(x_{1} - x_{2}) }^{2} + {(y_{2} - y_{1})}^{2} }}}

Similar questions