Math, asked by 1022338, 19 days ago

If the mode of the distribution is 43.75, find p
Class
interval

20 – 30 30 – 40 40 – 50 50 – 60 60 – 70

Frequency 25 47 62 p 10

Answers

Answered by mj604357
0

Answer:

Given :

Amount = Rs.3000

Rate = 10%

Time = 3 years

To find :

the compund interest and amount

Solution :

➝ Let's find the compund interest.

\tt\implies \boxed{ \sf Amount = \tt P \left[ 1 + \dfrac{ R }{100} \right]^{n } }⟹

Amount=P[1+

100

R

]

n

Here,

P = 3000

R = 10

N = 3

\tt\implies { \sf Amount = \tt 3000 \left[ 1 + \dfrac{ 10 }{100} \right]^{3 } }⟹Amount=3000[1+

100

10

]

3

\tt\implies { \sf Amount = \tt 3000 \left[ \dfrac{1 + 10 }{100} \right]^{3 } }⟹Amount=3000[

100

1+10

]

3

\tt\implies { \sf Amount = \tt 3000 \left[ \dfrac{11}{100} \right]^{3 } }⟹Amount=3000[

100

11

]

3

\tt\implies { \sf Amount = \tt 3000 \left[ \dfrac{11}{100} \times \dfrac{11}{100} \times \dfrac{11}{100} \right] }⟹Amount=3000[

100

11

×

100

11

×

100

11

]

\tt\implies { \sf Amount = \tt 3000 \left[ \dfrac{11}{10} \times \dfrac{11}{10} \times \dfrac{11}{10} \right]}⟹Amount=3000[

10

11

×

10

11

×

10

11

]

\tt\implies { \sf Amount = \tt 3000 \left[ \dfrac{11 \times 11 \times 11}{10 \times 10 \times 10} \right]}⟹Amount=3000[

10×10×10

11×11×11

]

\tt\implies { \sf Amount = \tt 3 \cancel0 \cancel0 \cancel0 \left[ \dfrac{11 \times 11 \times 11}{1 \cancel0 \times 1 \cancel0 \times 1 \cancel0} \right]}⟹Amount=3

0

0

0

[

1

0

×1

0

×1

0

11×11×11

]

\tt\implies { \sf Amount = \tt 3 \left[ \dfrac{11 \times 11 \times 11}{1 \times 1 \times 1 } \right]}⟹Amount=3[

1×1×1

11×11×11

]

\tt\implies { \sf Amount = \tt 3 \left[ \dfrac{1331}{1 } \right]}⟹Amount=3[

1

1331

]

\tt\implies { \sf Amount = \tt 3 \left[ 1331\right]}⟹Amount=3[1331]

\implies \tt Amount = 3 \times 1331⟹Amount=3×1331

\implies \tt Amount = 3993⟹Amount=3993

Therefore, the Amount is Rs. 3993.

Compound Interest = Amount - Principal

= 3993 - 3000

= 993

Therefore, the Compound Interest is Rs. 993.

Similar questions