If the mode of the distribution is 43.75, find p
Class
interval
20 – 30 30 – 40 40 – 50 50 – 60 60 – 70
Frequency 25 47 62 p 10
Answers
Answer:
Given :
Amount = Rs.3000
Rate = 10%
Time = 3 years
To find :
the compund interest and amount
Solution :
➝ Let's find the compund interest.
\tt\implies \boxed{ \sf Amount = \tt P \left[ 1 + \dfrac{ R }{100} \right]^{n } }⟹
Amount=P[1+
100
R
]
n
Here,
P = 3000
R = 10
N = 3
\tt\implies { \sf Amount = \tt 3000 \left[ 1 + \dfrac{ 10 }{100} \right]^{3 } }⟹Amount=3000[1+
100
10
]
3
\tt\implies { \sf Amount = \tt 3000 \left[ \dfrac{1 + 10 }{100} \right]^{3 } }⟹Amount=3000[
100
1+10
]
3
\tt\implies { \sf Amount = \tt 3000 \left[ \dfrac{11}{100} \right]^{3 } }⟹Amount=3000[
100
11
]
3
\tt\implies { \sf Amount = \tt 3000 \left[ \dfrac{11}{100} \times \dfrac{11}{100} \times \dfrac{11}{100} \right] }⟹Amount=3000[
100
11
×
100
11
×
100
11
]
\tt\implies { \sf Amount = \tt 3000 \left[ \dfrac{11}{10} \times \dfrac{11}{10} \times \dfrac{11}{10} \right]}⟹Amount=3000[
10
11
×
10
11
×
10
11
]
\tt\implies { \sf Amount = \tt 3000 \left[ \dfrac{11 \times 11 \times 11}{10 \times 10 \times 10} \right]}⟹Amount=3000[
10×10×10
11×11×11
]
\tt\implies { \sf Amount = \tt 3 \cancel0 \cancel0 \cancel0 \left[ \dfrac{11 \times 11 \times 11}{1 \cancel0 \times 1 \cancel0 \times 1 \cancel0} \right]}⟹Amount=3
0
0
0
[
1
0
×1
0
×1
0
11×11×11
]
\tt\implies { \sf Amount = \tt 3 \left[ \dfrac{11 \times 11 \times 11}{1 \times 1 \times 1 } \right]}⟹Amount=3[
1×1×1
11×11×11
]
\tt\implies { \sf Amount = \tt 3 \left[ \dfrac{1331}{1 } \right]}⟹Amount=3[
1
1331
]
\tt\implies { \sf Amount = \tt 3 \left[ 1331\right]}⟹Amount=3[1331]
\implies \tt Amount = 3 \times 1331⟹Amount=3×1331
\implies \tt Amount = 3993⟹Amount=3993
Therefore, the Amount is Rs. 3993.
Compound Interest = Amount - Principal
= 3993 - 3000
= 993
Therefore, the Compound Interest is Rs. 993.