Math, asked by abdullabinsajidpk, 11 months ago

if the mode of the following distribution is 17 2/3 find p.

0-5 5-10 10-15 15-20 20-25 25-30 30-35
6 11 p 24 17 13 5

Answers

Answered by SuryaRajSalve
0

Sorry We aren't able to understand your question.

Answered by isafsafiya
1

Answer:

31

Given:-

distribution \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: frequency \\ 0 - 5 \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  6 \\ 5 - 10 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 11 \\ 10 - 15 \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  p \\ 15 - 20  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 24 \\ 20 - 25 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 17 \\ 25 - 30 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 13 \\ 30 - 35 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 5

To find:-

  • missing frequency P

Solution:-

  • the mode of the following distribution is 17 2/3 find p.

now,

Here..

maximum frequency = 24,

hence, modal class is 15 - 20

 l_{1} = 15 \\ f_{1}  = 24 \\ f_{2}  = 17\\ f_{0}  = p \\ h = 5 \\  \\ a s\: we \: all \:  \: know \\  \\ mode = l_{1}  +  \frac{f_{1} -  \: f_{0} }{2 \:f_{1} - f_{0} -  \: f_{2}}  \times h \\  \\

here

mode = 17 2/3

mode = l_{1}  +  \frac{f_{1} -  \: f_{0} }{2 \:f_{1} - f_{0} -  \: f_{2}}  \times h \\  \\  \: 17 \frac{2}{3}  = 15 +  \frac{24 - p}{2 \times 24 - p - 17}  \times 5 \\  \\  \frac{53}{3}  = 15 +  \frac{24 - p}{48 - p - 17}  \times 5 \\  \\  \frac{53}{3}  = 15 +  \frac{24 - p}{31 - p}  \times 5 \\  \\  \frac{53}{3 \times 5}  =  \frac{465 - 15p + 24 - p}{31 - p}   \\  \\  \frac{53}{15}  =  \frac{465 - 16p + 24}{31 - p}  \\  \\  \frac{53}{15}  =  \frac{489 - 16p}{31 - p}  \\  \\ 53(31 - p) \:  = 15(498 - 16p) \\  \\ 1643 - 53p = 7470 - 240p \\  \\  - 53p + 240p = 7470 - 1643 \\  \\ 187p = 5827 \\  \\ p =  \frac{5827}{187}  \\  \\ p = 31 \:  \: aprox

Similar questions