Math, asked by agarwalajanhavi7821, 1 year ago

if the mode of the given data is 45 find x and y

1 class 10-20 20-30 30-40 40-50 50-60 60-70 70-80 total
2 frequency 4 8 x 12 10 4 y 50

Answers

Answered by Raulrawat13
100
mark me as brainliest.
my answer is 100 % right.

x = 10 and y= 2.
mode = l + f1 - fo/ 2f1 - f2 -f0 × h

45-40= 12- x/ 14 - x ×10
14- x = 24-2x
by solving this x= 10
and for y
y =50- total of frequency
y= 50 - 48
y = 2
Answered by priyarksynergy
16

Given is the mode of a frequency distribution, Find the value of x and y.

Explanation:

  • Given is the proper table for classes and their frequency distributions for total 50 frequencies.  
  • class\ \ \  \ \ \  \ \ \  f_i\\10-20\ \ \ \ \ \  4 \\20-30\ \ \ \ \ \  8 \\30-40\ \ \ \ \ \  x \\40-50\ \ \ \ \ \  12 \\50-60\ \ \ \ \ \  10 \\60-70\ \ \ \ \ \  4 \\70-80\ \ \ \ \ \  y\ \ \ \ \      ->\sum\ f_i=N=50  
  • Now given that mode is M_o=45 therefore clearly the modal class is 40-50
  • Therefore we have, the lower bound, frequency of modal class, frequency of classes  preceding and succeeding the modal class, and the class size:
  • L=40,\ \ \ f_m=12,\ \ \ f_1=x,\ \ \ f_2=10,\ \ \ C=10\\->M_o=L+(\frac{f_m-f_1}{2f_m-f_1-f_2} )C\\\\->45=40+(\frac{12-x}{24-x-10} )10\\->2(12-x)=14-x\\->x=10  
  • Now we are given N=50 hence we get, N=\sum f\\->4+8+x+12+10+4+y=50\\->48+y=50\\->y=2  
  • The values of x and y are 10\ and\ 2 respectively.
Similar questions