if the mth term of an AP is 1/n and nth term of an AP is 1/m then show that the sum of n term is1/2 (mn+l)
Answers
Answered by
8
= 1/n
a + (m - 1)d = 1/n-----------( 1 )
= 1/m
a + (n - 1)d = 1/m-----------( 2 )
From--------( 1 ) &--------( 2 )
a + (n - 1)d = 1/m
a + (m - 1)d = 1/n
-------------------------
d(n - 1 - m + 1) = 1/m - 1/n
d(n - m) = (n - m)/nm
d = 1/nm [ put in -----( 1 ) ]
a + (m - 1)d = 1/n
a + (m - 1)*1/mn = 1/n
a + (1/n - 1/mn) = 1/n
a = 1/n - 1/n + 1/mn
a = 1/mn
we have to find .
= mn/2[2a + (mn - 1)d]
= mn/2[2/mn + (mn - 1)*1/mn ]
= mn/2[2/mn + (1 - 1/mn)]
= mn/2[2/mn - 1/mn + 1 ]
= mn/2[(2 - 1)/mn + 1]
= mn/2[1/mn + 1]
= mn/2[(1 + mn)/mn]
= 1/2[1 +mn]
Similar questions
Chemistry,
8 months ago
Math,
8 months ago
Business Studies,
8 months ago
Biology,
1 year ago
Math,
1 year ago