Math, asked by kc3334596, 10 months ago

If the Mth term of of AP is 1/N and Nth term of AP is 1/M . Show that sum of MN terms 1/2(M+N).......​

Answers

Answered by Anonymous
5

Step-by-step explanation:

#Follow me......

Let mth term of AP be ‘Am’ and nth term of AP be ‘An’

Therefore, Am = a+ (m-1)d=1/n ….(i)

An = a+(n-1)d=1/m ….(ii)

Subtracting equation (ii) from (i)

d[(m-1)-(n-1)] = 1/n-1/m,

d(m-n) = (m-n)/mn,

d = 1/mn ….(iii)

Substituting equation (iii) in (i)

a+(m-1)/mn = 1/n,

a = 1/n[1-(m-1)/m],

a = 1/mn ….(iv)

Now Amn i.e the mnth term of AP = a+(mn-1)d,

Substitute equation (iii) and (iv) in Amn,

1/mn+(mn-1)/mn = 1/mn[1+(mn-1)] = mn/mn = 1,

then the mn term = 1

sum of mn term :-

Amn = mn/2 ( 2/mn + (mn-1)1/mn)

= 1 + (mn)/2 - 1/2

= mn /2 + 1/2

= 1/2 (mn + 1)

Read more on Brainly.in - https://brainly.in/question/5895147#readmore

Answered by Anonymous
4

Step-by-step explanation:

Let mth term of AP be ‘Am’ and nth term of AP be ‘An’

Therefore,

Am = a+ (m-1)d= \frac{1}{ n}  ….(i). \\ An = a+(n-1)d= \frac{1}{m}  ….(ii)

Subtracting equation (ii) from (i)

d[(m-1)-(n-1)] =  \frac{1}{n} - \frac{1}{m} , \\ </h3><h3></h3><h3>d(m-n) =  \frac{m - n}{mn} , \: \\ </h3><h3>d =  \frac{1}{mn}  ….(iii) \:

Substituting equation (iii) in (i)

a+ \frac{m - 1}{mn} =  \frac{1}{n}  \\ </p><p></p><p>a =  \frac{1}{n} [ \frac{1-(m-1)}{m} ], \\ </p><p></p><p>a =  \frac{1}{mn}  ….(iv)

Now Amn i.e the mnth term of AP = a+(mn-1)d,

Substitute equation (iii) and (iv) in Amn,

 =  &gt;  \frac{1}{mn} + \frac{(mn-1)}{mn}    \\ =  &gt;  \frac{1}{mn} [1+(mn-1)] =  \frac{mn}{mn} = 1,</p><p></p><p>

then the mn term = 1

sum of mn term :-

Amn \:  =  \frac{mn}{2} (  \frac{2}{mn} + (mn-1) \frac{1}{mn} ) \\ </p><p></p><p>= 1 +  \frac{mn}{2}  -  \frac{1}{2}  \\ </p><p></p><p>=  \frac{mn}{2} +  \frac{1}{2}  \\ </p><p></p><p>=  \frac{1}{2}  (mn + 1) \\ </p><p>hope \: it \: helps \: you

Similar questions