if the no. (z-2/z+2) is purely imaginary , then find the value of |z|
Answers
Answered by
5
z = x +iy | z | = √ x² + y²
now z-2/z+2 = x+iy-2/x+iy +2 = (x-2) +iy/ (x+2) + iy
= [(x-2) + iy][(x+2) - iy] / [(x+2) + iy ] [(x+2) - iy]
= (x² -4) + iy(x+2) - iy (x-2) - i²y² / (x+2)² - i²y²
= x² -4 +iy(x+2 - x + 2) + y² / x² + 4 +4x + y²
= x² + y² - 4 / x² +y² + 4x +4 + i (4y) / x² +y² + 4x + 4
purely imaginary Re = 0
x² + y² -4 = 0
⇒ x²+y² = 4 ==== √x² + y² = 2
hope this helps.
now z-2/z+2 = x+iy-2/x+iy +2 = (x-2) +iy/ (x+2) + iy
= [(x-2) + iy][(x+2) - iy] / [(x+2) + iy ] [(x+2) - iy]
= (x² -4) + iy(x+2) - iy (x-2) - i²y² / (x+2)² - i²y²
= x² -4 +iy(x+2 - x + 2) + y² / x² + 4 +4x + y²
= x² + y² - 4 / x² +y² + 4x +4 + i (4y) / x² +y² + 4x + 4
purely imaginary Re = 0
x² + y² -4 = 0
⇒ x²+y² = 4 ==== √x² + y² = 2
hope this helps.
Similar questions