If the nth term of an ap is 7-3n,find the sum of 25 terms
Answers
Answered by
93
Tn = 7 - 3n
=> a + (n-1)d = 4 + 3 - 3n
=> a + (n - 1)d = 4 - 3( n - 1)
On Comparing both sides, we get
a = 4
d = - 3
Now,
Sn = 25/2 [ 2a +(25 - 1) d]
= 25/2 [ 2×4 + (24) (-3)]
= 25/2 [ 8 - 72]
= 25/2 [ -64]
= 25 × (-32)
= - 800
=> a + (n-1)d = 4 + 3 - 3n
=> a + (n - 1)d = 4 - 3( n - 1)
On Comparing both sides, we get
a = 4
d = - 3
Now,
Sn = 25/2 [ 2a +(25 - 1) d]
= 25/2 [ 2×4 + (24) (-3)]
= 25/2 [ 8 - 72]
= 25/2 [ -64]
= 25 × (-32)
= - 800
Answered by
57
Answer:
Step-by-step explanation:
Given :-
n = 25
a(n) = 7 - 3n
To Find :-
Sum of 25 terms.
Formula to be used :-
S(n) = n/2[2a + (n - 1)d]
Solution :-
Taking n = 1, 2, 3, ........, we get
a(1) = 7 - 3 × 1 = 4
a(2) = 7 - 3 × 2 = 1
a(3) = 7 - 3 × 3 = - 2
A.P is 4, 1, - 3, ........
Here, a = 4, d = 1 - 3 = - 3
Since, S(n) = n/2[2a + (n - 1)d]
⇒ s(25) = 25/2[2 × 4 + (25 - 1) (- 3)]
⇒ s(25) = 25/2[8 + 24 (- 3)]
⇒ s(25) = 25/2(8 - 47)
⇒ s(25) = - 800
Hence, the sum of 25 terms is - 800.
Similar questions