Math, asked by Anonymous, 11 months ago

If the nth terms of two A.P.s 23, 25, 27, ... and 5, 8, 11, 14, ... are equal,then find the value of n.

Answers

Answered by trixy123
3

Answer:

n=18

Step-by-step explanation:

SInce one AP starts from 23 with increment of 2,

nth term=23+2n

In other AP, values start from 5 with increment of 3

So, nth term=5+3n

From the question,

       23+2n=5+3n

       3n-2n=23-5

        n=18

Answered by Anonymous
2

Answer:

23,25 ,27,... \: .is \:  ap \:  no 1  \\ </p><p>5,8,11,14 .... \: ..is \:  Ap  \: no 2 \\ </p><p></p><p></p><p>1st Ap  \\ </p><p>a= 23 \\ </p><p>d=2 \\   \underline{{a}(n)  = 23 + (n - 1)2 \:  \:  \:  \:  \:  \: ....... \boxed {1}}\:  \\  \\ 2nd \: a.p. \\ a = 5 \\ d = 3 \\ \underline {a(n) =  5 +( n - 1)3 \:  \:  \:  \:  \:  \: ...... \boxed{2}} \\ from \: 1  \: and \: 2 \:  \\ 23 + ( n- 1)2 = 5 + ( n- 1)3 \\ \\  23 - 5 = (n - 1)3 - (n - 1)2 \\  \\ 18 = (n  - 1)  \\  \\  \\ n = 18 + 1 \\ n = 19 \\  \\   \green{\boxed{ \red{n = 19}}}

&lt;marquee&gt; hi harsh sharma51

Similar questions