Math, asked by ss982861, 9 months ago

If the number 501 is a term of an A.P. 12,15,18.. Which term will it be?
option (a)165
option (b) 164
option (c) 163
option (d) 162​

Answers

Answered by SarcasticL0ve
45

GivEn:

  • AP = 12, 15,18,...

To find:

  • The number 501 is which term of AP.

SoluTion:

Let's 501 be \sf a_n term of AP.

As we know that,

\star\;\sf a_n = a + (n - 1)d

Here,

  • a = 12

  • d = \sf a_2 - a_1 = 15 - 12 = 3

  • \sf a_n = 501

Therefore,

:\implies 501 = 12 + (n - 1)3

:\implies 501 = 12 + 3n - 3

:\implies 501 = 3n + 9

:\implies 501 - 9 = 3n

:\implies 492 = 3n

:\implies n = \sf \cancel{ \dfrac{492}{3}}

:\implies{\underline{\boxed{\sf{\pink{n = 164}}}}}\;\bigstar

\therefore Hence, 501 is the \sf 164^{th} term of given AP.

Therefore, Option (b) is correct.

━━━━━━━━━━━━━━━

\begin{lgathered}\boxed{\begin{minipage}{20 em}$\sf \displaystyle \bullet \;\sf n^{th}$\;term\;of\;AP\;, a_n = a + (n-1)d \\\\\\ \bullet\;\sf Sum\of\;n\;terms\;of\:an\;AP\;, S_n= \dfrac{n}{2} \left(a + a_n\right)$\end{minipage}}\end{lgathered}

Answered by BrainlyPopularman
55

GIVEN :

A.P. → 12 , 15 , 18 , ..............

TO FIND :

Which term is 501 ?

SOLUTION :

We know that –

 \bf \implies \large{ \boxed{ \bf T_n = a +(n-1)d}}

• Here –

 \bf \:  \:  \: { \huge{.}} \:  \:  \: a = 12

 \bf \:  \:  \: { \huge{.}} \:  \:  \: d =15 - 12 = 3

 \bf \:  \:  \: { \huge{.}} \:  \:  \: T_n =501

 \bf \:  \:  \: { \huge{.}} \:  \:  \: n = \: ?

• So that –

 \bf \implies 501 = 12+(n-1)3

 \bf \implies 501 - 12= (n-1)3

 \bf \implies 489= (n-1)3

 \bf \implies  (n-1)3 = 489

 \bf \implies  n - 1=  \dfrac{489}{3}

 \bf \implies  n - 1=  163

 \bf \implies  n =163 + 1

 \bf \implies \large{ \boxed{ \bf n =164}}

164th term is 501.

Hence , Option (b) is correct.

Similar questions