Math, asked by vathsala2006, 1 month ago

if the numbers n-1,n+3 and 3n -2are in AP, then the values of n is​

Answers

Answered by kumaranmol1909
1

Answer

Step-by-step explanation:

So, difference between two consecutive terms is same

So,

=>(n+3)-(n-1)=(3n-2)-(n+3)

=>n+3-n+1=3n-2-n-2

=>4=2n-5

=>n=9/2

if wrong pls tell me

Answered by ciola
0

Answer:

Given : (n - 1), (n + 3) and (3n - 2) are in A.P.

So, difference between two consecutive terms is same.

So,

(n + 3) - (n - 1) = (3n - 2) - (n + 3) \\ n + 3 - n + 1 = 3n - 2 - n - 3 \\  4 = 2n - 5 \\ 4 + 5 = 2n \\ 9 = 2n \\ \boxed{ \bf \underline{ \underline{  \frac{9}{2} }} = n}

Numbers are :

n - 1 \rightarrow \frac{9}{2}  - 1 =  \frac{9 - 2}{2}  =  \frac{7}{2}  \\  \\ n + 3 \rightarrow  \frac{9}{2}+ 3 =  \frac{9 + 6}{2}  =  \frac{15}{2}  \\  \\ 3n - 2 \rightarrow 3( \frac{9}{2}) - 2 =  \frac{27}{2}  - 2 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \frac{27 - 4}{2}  =  \frac{23}{2}  \\  \\ \boxed{\bf Numbers \:  \:  are : \frac{7}{2}, \:  \:  \frac{15}{2} , \:  \:  \frac{23}{2} }

Similar questions