Math, asked by krishnasori22, 1 month ago

If the ordered pairs (x, y) of positive integers x and y satisfying the equation tan–1x + cot–1y = tan–13 are represented as points A and B in cartesian plane, then distance between points A and B is

Answers

Answered by pulakmath007
9

SOLUTION

TO DETERMINE

If the ordered pairs (x, y) of positive integers x and y satisfying the equation

 \displaystyle \sf{ { \tan}^{ - 1}x +{ \cot}^{ - 1} y =  { \tan}^{ - 1}3 }

are represented as points A and B in cartesian plane, then distance between points A and B is

EVALUATION

Here the given equation is

 \displaystyle \sf{ { \tan}^{ - 1}x +{ \cot}^{ - 1} y =  { \tan}^{ - 1}3 }

We solve it as below

 \displaystyle \sf{ { \tan}^{ - 1}x +{ \cot}^{ - 1} y =  { \tan}^{ - 1}3 }

 \displaystyle \sf{  \implies \: { \tan}^{ - 1}x +{ \tan}^{ - 1}  \frac{1}{y}  =  { \tan}^{ - 1}3 }

 \displaystyle \sf{  \implies \: { \tan}^{ - 1}  \: \frac{x +  \frac{1}{y} }{1 -  \frac{x}{y} }   =  { \tan}^{ - 1}3 }

 \displaystyle \sf{  \implies \: { \tan}^{ - 1}  \: \frac{x y + 1}{y - x}   =  { \tan}^{ - 1}3 }

 \displaystyle \sf{  \implies \:  \: \frac{x y + 1}{y - x}   =3 }

 \displaystyle \sf{  \implies \:  \: xy + 1 = 3y - 3x }

 \displaystyle \sf{  \implies \:  \: xy + 3x = 3y - 1 }

 \displaystyle \sf{  \implies \:  \: 3y - xy  = 3x + 1  }

 \displaystyle \sf{  \implies \:  \: y =  \frac{3x + 1}{3 - x}   }

Since x and y are positive integers

So x = 1 gives y = 2

x = 2 gives y = 7

So two pair of values of x and y in the form (x, y) represents the points A(1,2) , B(2,7) in cartesian plane

So the required required distance

= AB

 \sf{ =   \sqrt{ {(2 - 1)}^{2}  +  {(7 - 2)}^{2} }  }

 \sf{ =   \sqrt{ {(1)}^{2}  +  {(5)}^{2} }  }

 \sf{ =   \sqrt{ 1 + 25 }  }

 \sf{ =   \sqrt{ 26}  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. tan⁻¹2 +tan⁻¹3 is..,Select Proper option from the given options.

(a) - π/4

(b) π/2

(c) 3π/4

(d) 3π/2

https://brainly.in/question/5596487

2. tan⁻¹(x/y)-tan⁻¹(x-y/x+y)=...(x/y≥0),Select Proper option from the given options.

(a) π/4

(b) π/3

(c) π/2

(d) π

https://brainly.in/question/5596504

Similar questions