If the outer angles nat three vertices of a triangle are (2x+30)+(3x-10)+100. what is the value of x? find all the angles?
Answers
Step-by-step explanation:
The sum of all interior angles of a triangle is always 180 degrees
So the above angles will sum up to 180 i.e
(2x+30) + (3x-110) + (5/2x+20) = 180
->By taking LCM of above equation
(2x+30) (2x+20)+ (3x-110) (2x+20)+ 5 = 180(2x+20)
4x.x + 40x + 60x + 600 + 6x.x + 60x - 220x - 2200 + 5 = 360x + 3600
10x.x - 60x - 2195 = 360x + 3600
Now, reducing above equation
10x.x - 420x - 5795 = 0
Which is a linear equation. Solving using
x = (−b ± √(b2 − 4ac))/2a
Where a= 10, b= -420 and c= -5795
x= [-(-420) - √((-420).(-420)-4(10)(-5795))]/2(10)
x=[420 - √(176400)-(231800))]/20
x=[420 - √(-55400)]/20
Since √(-1) = i (iota) gives √(-55400)=235i (approx)
x=[420 - 235i]/20
Hence x = 21 - 11.35i
Answer:
x=12
Step-by-step explanation:
. 2x+30+3x-10+100=180
:. 2x+3x+30-10+100=180
:. 5x+20+100=180
:. 5x+120=180
:. 5x=60
:. x=12