Math, asked by saurabhganjeer03, 1 month ago

If the p and q are the roots of the equation 2x ^ 2 - 4x - 3 = 0 the value of p ^ 2 + q ^ 2 is (a) 5 (b)7 (c)3; (d) - 4​

Answers

Answered by amansharma264
26

EXPLANATION.

p and q are the roots of the equation.

⇒ 2x² - 4x - 3 = 0.

As we know that,

Sum of the zeroes of the quadratic expression.

⇒ p + q = - b/a.

⇒ p + q = -(-4)/2 = 2.

Products of the zeroes of the quadratic expression.

⇒ pq = c/a.

⇒ pq = (-3)/2 = - 3/2.

To find :

⇒ p² + q².

As we know that,

We can write equation as,

⇒ p² + q² = [p + q]² - 2pq.

Put the values in the equation, we get.

⇒ p² + q² = (2)² - 2(-3/2).

⇒ p² + q² = 4 + 3.

⇒ p² + q² = 7.

Option [B] is correct answer.

                                                                                                                         

MORE INFORMATION.

Nature of the roots of the quadratic expression.

(1) = Real and unequal, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal Or complex conjugate.

Answered by SparklingThunder
22

 \bf \underline{Question : }

If the p and q are roots of the equation

2 {x}^{2} - 4x - 3 = 0 . The value of   \sf{p}^{2}  +  {q}^{2} is :-

(a) 5

(b) 7 ✓

(c) 3

(d) - 4

 \bf \underline{Answer : }

 \sf b) 7

 \bf \underline{Explanation : }

 \sf \underline{Given  \: Equation : }

 \tt2 {x}^{2}  - 4x - 3 = 0

 \sf We  \: know  \: that \begin{cases} \sf p +q =  \frac{ - b}{ \:  \: a}  \\ \\   \sf pq =  \frac{c}{a}   \end{cases}

 \sf where \begin{cases} \sf a = \:  \:  \:   2  \\  \sf b =  - 4 \\   \sf c =  - 3 \end{cases}

 \sf  \underline{Sum \:  of  \: roots }

 \sf p + q =  \frac{  \cancel-  (\cancel-4 )}{2}  =  \frac{4}{2}  = 2

 \sf  \underline{Product \:  of  \: roots }

 \sf pq =  \frac{ - 3}{ \:  \: 2}

 \sf   {p}^{2}  +  {q}^{2}  =  {(p + q)}^{2}  - 2pq

 \sf Putting  \: values \:  in \:  above \:  equation

 \sf   \implies {p}^{2}  +  {q}^{2}  =  {(2)}^{2}  - 2( \frac{ - 3}{ \:  \: 2} )

\sf   \implies {p}^{2}  +  {q}^{2}  = 4 + 3 \\ \sf   \implies {p}^{2}  +  {q}^{2}  =7 \:  \:  \:  \:  \:  \:  \:

Similar questions