Math, asked by aryanverma212, 10 months ago

If the p.th, q.th and r.th term of an A.P. as well as a G.P. (Same first term) are a, b and c respectively, prove that a^{b-c} . b^{c-a}. c^{a-b} =1

Answers

Answered by VishnuPriya2801
7

Answer:-

Given:

pth , qth , rth terms of an AP & GP are a , b, c.

By using common difference in AP,

→ c - b = b - a

Multiplying ( - 1) both sides,

→ b - c = a - b. -- equation (1)

→ 2b = a + c -- equation (2)

Again,

a , b , c are in GP,

Using. Geometric mean ,

→ b² = ac -- Equation (3)

Now,

We have to prove,

 \sf{ {a}^{b - c}  \times  {b}^{c - a}  \times  {c}^{a - b}  = 1} \\  \\

Now Substitute eq- (1) here,

 →\sf{ {a}^{a - b}  \times  {c}^{a - b} \times  {b}^{c - a}   = 1} \\  \\

Using (aⁿ)*(bⁿ) = (ab)ⁿ,

→ \sf{ {ac}^{a - b}  \times  {b}^{c - a} = 1 }\\  \\

Now ,

Substituting eq- (3) we get,

→ \sf{ {{b}^{2}}^{(a - b)}    \times  {b}^{c - a}  = 1}

Now,

\sf{ Using \:{{a}^{m} }^{n} = a^{mn}\: and\:a^{(m)} * a^{(n)} = a^{(m + n)},}

 →\sf{ {b}^{2a - 2b + c - a}  = 1} \\  \\ → \sf{ {b}^{a + c - 2b}  = 1} \\  \\

Substitute eq - (2) here.

→ \sf{ {b}^{2b - 2b}  = 1} \\  \\→  \sf{ {b}^{0}  = 1} \\  \\  →\sf{1 = 1}

(a^0 = 1)

Hence, Proved.

Similar questions