If the pair of equations 2x +3y=5 and 10x+15y=2k represent 2 coincident lines what is the value of k?
Answers
Answer:
k = 12.5
Step-by-step explanation:
Given:
2 pairs of linear equation in 2 variables.
- 2x + 3y - 5 = 0
- 10x + 15y - 2k = 0
Solution:
Let
- a₁ = 2
- a₂ = 10
- b₁ = 3
- b₂ = 15
- c₁ = -5
- c₂ = -2k
For lines to be coincident,
So,
On cross multiplying and cancelling minus sign,
Answer:
k = 12.5
\begin{gathered}\\\end{gathered}
Step-by-step explanation:
Given:
2 pairs of linear equation in 2 variables.
2x + 3y - 5 = 0
10x + 15y - 2k = 0
\begin{gathered}\\\end{gathered}
Solution:
Let
a₁ = 2
a₂ = 10
b₁ = 3
b₂ = 15
c₁ = -5
c₂ = -2k
\begin{gathered}\\\end{gathered}
For lines to be coincident,
\begin{gathered} \tt{ \dfrac{a_1}{a_2} = \dfrac{b_1}{b_2} = \dfrac{c_1}{c_2} } \\ \\ \end{gathered}
a
2
a
1
=
b
2
b
1
=
c
2
c
1
So,
\begin{gathered}\dfrac{2}{10} = \dfrac{3}{15} = \dfrac{ - 5}{ - 2k} \\ \\ \end{gathered}
10
2
=
15
3
=
−2k
−5
\begin{gathered} \implies \sf{ \dfrac{1}{5} = \dfrac{1}{5} = \dfrac{ - 5}{ - 2k} } \\ \\ \end{gathered}
⟹
5
1
=
5
1
=
−2k
−5
\begin{gathered} \implies \sf{ \dfrac{1}{5} = \dfrac{ - 5}{ - 2k} } \\ \\ \end{gathered}
⟹
5
1
=
−2k
−5
On cross multiplying and cancelling minus sign,
\begin{gathered} \implies \sf{2k = 25} \\ \\ \end{gathered}
⟹2k=25
\begin{gathered} \implies \sf{k = \dfrac{25}{2} } \\ \\ \end{gathered}
⟹k=
2
25
\begin{gathered} \therefore \boxed{ \bf{ k = 12.5}} \\ \\ \end{gathered}
∴
k=12.5