Math, asked by saifirukhsar8081, 1 year ago

If the parabola y^2 = 4ax passes through the point (3, 2), then the length of its latus rectum is

Answers

Answered by MaheswariS
13

\textsf{Given parabola is }

\mathsf{y^2=4ax}

\textsf{It passes through (3,2)}

\implies\mathsf{2^2=4a(3)}

\implies\mathsf{4=4a(3)}

\implies\mathsf{1=3a}

\implies\mathsf{a=\frac{1}{3}}

\textsf{Length of the latusrectum=4a}

\textsf{Length of the latusrectum=$4(\frac{1}{3})$}

\implies\textsf{Length of the latusrectum=$\frac{4}{3}$}

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Length\:of\:latus\:rectum=\frac{4}{3}\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{given :}} \\  \tt{:   \implies  eqn \: of \: parabola \: ({y}^{2}  =4 ax}) \\  \\  \tt{: \implies point \: on \: parabola = (3, 2) } \\  \\ \red{ \underline \bold{to \: find :}} \\  \tt{:  \implies length \: of \: latus \: rectum = ?}

• According to given question :

 \tt {: \implies  {y}^{2}  = 4ax} \\  \\   \to \text{3,2 \: is \: on \: parabola \: so, \: the}\\   \text{Eqn \: satisfy \: this \: point} \\  \\  \tt{: \implies  { 2}^{2}  = 4 \times a \times   3} \\  \\  \tt{:  \implies 4 =   12a} \\  \\  \tt{:  \implies a =  \frac{4}{12} } \\  \\   \green{\tt{:  \implies a = \frac{1}{3}}} \\  \\   \green{ \tt{:  \implies Eqn \: of \: parabola \: is \:  \:  {y}^{2}  = \frac{4}{3}x}} \\  \\  \bold{As \: we \: know \: that} \\   \tt{:  \implies Length \: of \: latus \: rectum = 4a} \\  \\ \tt{:  \implies Length \: of \: latus \: rectum = 4 \times \frac{1}{3}} \\  \\  \green{\tt{:  \implies Length \: of \: latus \: rectum = \frac{4}{3} \: units}}

Similar questions