Physics, asked by keahavjha9933, 1 month ago

If the peak value of an alternating emf is 10 V what is its mean value over half cycle.

Answers

Answered by nirman95
2

Given:

Peak value of alternating EMF = 10 volts.

To find:

Average value of half cycle?

Calculation:

So, alternating EMF is :

V =  V_{0} \sin( \omega t)

Now, average value is :

V_{avg} = \dfrac{  \displaystyle\int_{0}^{T/2} V dt}{\displaystyle \int_{0}^{T/2} dt}

 \rm \implies V_{avg} = \dfrac{  \displaystyle\int_{0}^{T/2} V dt}{ \dfrac{T}{2} }

 \rm \implies V_{avg} = \dfrac{  \displaystyle\int_{0}^{T/2} V_{0} \sin( \omega t)   dt}{ \dfrac{T}{2} }

 \rm \implies V_{avg} = \dfrac{2V_{0}  \displaystyle\int_{0}^{T/2}  \sin( \omega t)   dt}{T }

 \rm \implies V_{avg} = \dfrac{ - 2V_{0}  \displaystyle    \dfrac{\cos( \omega t)}{ \omega}     \bigg|_{0}^{T/2} }{T }

 \rm \implies V_{avg} = \dfrac{ - 2V_{0}  \displaystyle    \cos( \omega t)   \bigg|_{0}^{T/2} }{ \omega T }

  • Put \omega = 2π/T

 \rm \implies V_{avg} = \dfrac{  2V_{0}  \displaystyle     \bigg \{\cos(0)   -  \cos(\pi)  \bigg \} }{ 2\pi}

 \rm \implies V_{avg} = \dfrac{  2V_{0}  \displaystyle     \bigg \{1 + 1  \bigg \} }{ 2\pi}

 \rm \implies V_{avg} = \dfrac{  2V_{0}  \displaystyle     \bigg \{2  \bigg \} }{ 2\pi}

 \rm \implies V_{avg} = \dfrac{  2V_{0}  }{ \pi}

 \rm \implies V_{avg} = \dfrac{  2 \times 10  }{ \pi}

 \rm \implies V_{avg} = \dfrac{  20  }{ \pi}

 \rm \implies V_{avg} = 6.36 \: volt

So, average EMF over half cycle is 6.36 Volt

Similar questions