Math, asked by Anonymous, 3 months ago

.If the perimeter and length of a rectangle is 6:1 and the area of the rectangle is 288 cm^2 . Then find the length​

Answers

Answered by shashank956
3

Answer:

OK ----___----XD

Step-by-step explanation:

Let the length be 2x and breadth be x

then,

Area, 2x

2

=288

⇒x

2

=144

⇒x=12

∴2x=24

Hence length=24,breadth=12

∴Perimeter =2(12+24)=72cm

HOPE THIS ANSWER IS HELP YOU

AUR app apni profile picture change Karo please vo dekkar Accha nahi lagata so please

OK _-----____-------__------_--XD

Answered by ItzBrainlyBeast
25

\maltese\LARGE\textsf{\underline{ FiGuRe :-}}

\large\textsf{                                                               }

\large\textsf{Length = 12cm}

\boxed{\begin{array}{ c c c c } \; \; \; \; & \; \; \; \; & \; \; \; \; & \; \; \; \; \\\\ \; \; \; \; & \; \; \; \; & \; \; \; \; & \; \; \; \; \\\\ \; \; \; \; & \; \; \; \; & \; \; \; \; & \; \; \; \;\end{array}} Breadth = 24cm

\large\textsf{                                                               }

\maltese\LARGE\textsf{\underline{ SoLuTioN :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Ratio of Perimeter to length = 6 : 1}

\large\textsf{                                                               }

↦ Let's assume x as the common multiple :-

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Perimeter = 6x}

\qquad\tt{:}\longrightarrow\large\textsf{Length = x}

\large\textsf{                                                               }

↦ We know that :-

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{purple}{${\large\textsf{Area}}_{\large\textsf{( \; Rectangle \; )}} = \large\textsf{ length × breadth}$}}\\\\\\\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{purple}{${\large\textsf{Perimeter}}_{\large\textsf{( \; Rectangle \; )}} = \large\textsf{2 ( l + b )}$}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{2 ( l + b ) = Perimeter}

\qquad\tt{:}\longrightarrow\large\textsf{2 ( x + b ) = 6x}

\qquad\tt{:}\longrightarrow\large\textsf{2x + 2b = 6x}

\qquad\tt{:}\longrightarrow\large\textsf{2b = 6x - 2x}

\qquad\tt{:}\longrightarrow\large\textsf{ b =$\cfrac{\large\textsf{4x}}{\large\textsf{2}}$}

\qquad\tt{:}\longrightarrow\large\textsf{b = 2x ----- ( i )}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{length × breadth = Area}

\qquad\tt{:}\longrightarrow\large\textsf{x × 2x = 288 ----- [ From ( i ) ]}

\qquad\tt{:}\longrightarrow\large\textsf{2x² = 288}

\qquad\tt{:}\longrightarrow\large\textsf{ x²=$\xcancel{\cfrac{\large\textsf{288}}{\large\textsf{2}}}$}

\qquad\tt{:}\longrightarrow\large\sf{x = √144}

\qquad\tt{:}\longrightarrow\boxed{\large\textsf{∴ x = 12}}

\large\textsf{                                                               }

\large\texttt\textcolor{orange}{∴ Length = 12cm}

Similar questions