Math, asked by shresthaprazishma, 9 months ago

if the perimeter of a rectangle is 120m. and breadth is 18.25m find length

Answers

Answered by visheshagarwal153
21

ᏀᏆᐯᗴᑎ:-

  • \text{Perimeter of rectangle = 120m}
  • \text{Breadth of rectangle = 18.25m}

ᴛᴏ ғɪɴᴅ:-

  • \text{Length of rectangle.}

sᴏʟᴜᴛɪᴏɴ:-

\sf We \: know \: that,

\boxed{ \sf Perimeter \: of \: rectangle = 2(Length+Breadth)}

Using this formula,

\sf \leadsto 120m = 2(Length + 18.25m)

\sf \leadsto 120m = 2Length + 36.5m

\sf \leadsto 2Length = 120m - 36.5m

\sf \leadsto 2Length = 83.5m

\sf \leadsto Length = 10 \Bigg (\dfrac{83.5m}{2} \Bigg ) = \dfrac{835m}{20} = 41.75m

I multiplied the fraction by 10 so that the decimal goes away.

\boxed{\bold {Length \: of \: the \: rectangle= 41.75m}}

Answered by Anonymous
151

\green{\large\underline{\underline\mathtt{Question:}}}

If the perimeter of a rectangle is 120 m , and breadth is 18.25 m then find its length.

\orange{\large\underline{\underline\mathtt{To\:Find:}}}

  • To finds it's length:-

\purple{\large\underline{\underline\mathtt{Given:}}}

  • \mathtt{Perimeter = 120 m}
  • \mathtt{Breadth = 18.25 m}

\red{\large\underline{\underline\mathtt{Taken:}}}

→ Let the Length be l m.

\green{\large\underline{\underline\mathtt{We\:know:}}}

\underline{\boxed{\mathtt{Perimeter = 2(length + breadth)}}}

\blue{\large\underline{\underline\mathtt{Concept:}}}

By using the formula for perimeter of a reactangle , we can find the formula for length of the rectangle.i.e,

Perimeter = 2(length + Breadth)

\therefore length = \dfrac{perimeter}{2} - breadth

\purple{\large\underline{\underline\mathtt{Solution:}}}

We know,

length = \dfrac{perimeter}{2} - breadth

Putting the value in the formula , we get:-

\Rightarrow l = \dfrac{120}{2} - 18.25

\Rightarrow l = \dfrac{120 - 36.50}{2}

\Rightarrow l = \dfrac{83.5}{2}

\Rightarrow l = \dfrac{\cancel{83.5}}{\cancel{2}}

\Rightarrow l = 41.75 m

\therefore Length \rightarrow l = 41.75 m

\red{\large\underline{\underline\mathtt{Verification:}}}

We know,

Perimeter = 2(length + Breadth)

Putting the value the equation , we get

  • length = 41.75 m
  • Breadth = 18.25 m
  • perimeter = 120 m

\Rightarrow 120 = 2(41.75 + 18.25)

\Rightarrow 120 = 2(60)

\Rightarrow 120 = 120

\therefore LHS = RHS

Hence, the value of Length is correct :)

\blue{\large\underline{\underline\mathtt{Extra\: information:}}}

  •  Breadth =  \dfrac{perimeter}{2} - length
  •  Area(rectangle) = length \times breadth
  •  Area(square) = side \times side

______________________________________

Similar questions