Math, asked by smritisinha49, 11 months ago

If the perimeter of a rectangle is equal to the perimeter of a square with sides 4m each and the length of the rectangle is thrice its breadth, then the area of the rectangle would be??​

Answers

Answered by aadii27
46

Hope its help u plz like nd mark as brainliest

Attachments:
Answered by Sauron
77

Answer:

The area of the Rectangle is 12 m².

Step-by-step explanation:

Given :

Perimeter of the rectangle = Perimeter of the Square

Side of the Square = 4 m

To find :

Area of the rectangle

Solution :

\textsf{\underline{\underline{Perimeter of the square - }}}

Perimeter = 4 × Side

\sf{\implies} \: 4 \times 4 \\  \\ \sf{\implies} \: 16

Perimeter = 16 m

\rule{300}{1.5}

\textsf{\underline{\underline{Dimensions of the rectangle - }}}

Let the -

  • Breadth be y
  • Length be 3y

Perimeter = 2(Length + Breadth)

\sf{\implies} \: 16 = 2(3y + y) \\  \\ \sf{\implies} \: 16 = 6y + 2y \\  \\ \sf{\implies} \: 16 = 8y \\  \\ \sf{\implies} \: y =  \dfrac{16}{8} \\  \\ \sf{\implies} \: y = 2

Breadth = 2 m

\rule{300}{1.5}

Value of 3y

\sf{\implies} \: 3(y) \\  \\ \sf{\implies} \: 3(2) \\  \\ \sf{\implies} \: 6

Length = 6 m

\rule{300}{1.5}

\textsf{\underline{\underline{Area of the rectangle -}}}

Area = Length × Breadth

\sf{\implies} \: 6 \times 2 \\  \\ \sf{\implies} \: 12

Area = 12 m²

\therefore The area of the Rectangle is 12 m².

Similar questions