If the perimeter of a rectangular room is
34 and the length of the diagonal is 13,
then the dimensions of the room are
Answers
Given :
- Perimeter of a rectangular room = 34 units
- Length of diagonal of the room = 13 units
To find :
- The dimensions of the room
Solution :
Using formula,
- Perimeter of rectangle = 2(l + b)
where,
- l denotes the length of the rectangle
- b denotes the breadth of the rectangle
Substituting the given values :
⇒ 34 = 2(l + b)
⇒ 34/2 = l + b
⇒ 17 = l + b ------(1)
Using formula,
- Diagonal of rectangle = √(l² + b²)
Substituting the given values :
⇒ 13 = √(l² + b²)
⇒ Squaring both the sides :
⇒ (13)² = [√(l² + b²)]²
⇒ 169 = l² + b² ------(2)
Taking equation (1) :
⇒ 17 = l + b
⇒ l = 17 - b -----(3)
Substituting equation (3) in (4) :
⇒ 169 = l² + b²
⇒ 169 = (17 - b)² + b²
Using identity :
- (a - b)² = a² + b² - 2ab
⇒ 169 = (17² + b² - 2(17)(b) + b²
⇒ 169 = 289 + b² - 34b + b²
⇒ 169 - 289 = b² + b² - 34b
⇒ - 120 = 2b² - 34b
⇒ 2b² - 34b + 120 = 0
⇒ Taking 2 common :
⇒ 2(b² - 17b + 60) = 0
⇒ b² - 17b + 60 = 0
⇒ A quadratic equation is formed whose product is 60b²
⇒ b² - 12b - 5b + 60 = 0
⇒ b(b - 12) - 5(b - 12) = 0
⇒ (b - 5)(b - 12) = 0
⇒ (b - 5) = 0 or (b - 12) = 0
⇒ b = 5 or b = 12
The dimensions of the rectangular room :
When b = 5 :-
Substituting b = 5 in equation (1) :
→ 17 = l + b
→ 17 = l + 5
→ 17 - 5 = l
→ 12 = l
When b = 12 :-
Substituting b = 12 in equation (1) :
→ 17 = l + b
→ 17 = l + 12
→ 17 - 12 = l
→ 5 = l
Therefore,
- When breadth of the room = 5 units then the length of the room = 12 units
- When breadth of the room = 12 units then the length of the room = 5 units