Math, asked by NITESH761, 4 days ago

If the perimeter of a right isosceles triangle is  \rm 2+ 2 \sqrt{2} \: m then find the length of its hypotenuse.​

Answers

Answered by saichavan
30

In right isosceles two sides of triangle are equal except the hypotenuse.

Assume, a = two equal sides of triangle.

and a√2 = hypotenuse.

 \sf \: a + a + a\sqrt{2}  = 2 + 2 \sqrt{2}

 \sf \implies \: 2a + a \sqrt{2}  = 2 + 2 \sqrt{2}

 \sf \implies \: a \sqrt{2} ( \sqrt{2}  + 1) = 2 + 2 \sqrt{2}

 \sf \: a =  \dfrac{2 + 2 \sqrt{2} }{ \sqrt{2}( \sqrt{2}   + 1)}

 \sf \implies \: a =  \dfrac{2(1 +  \sqrt{2} )}{ \sqrt{2} ( \sqrt{2}  + 1)}

 \sf \: a =  \dfrac{2 \cancel{( 1 +  \sqrt{2} )}}{ \sqrt{2}  +(  \cancel{\sqrt{2}  + 1)} }

 \sf \: a =  \dfrac{2}{ \sqrt{2} }

 \sf \therefore \: a =  \sqrt{2} m

  \sf \: hypotenuse = a \sqrt{2}

 \sf \implies hypotenuse \:  =  \sqrt{2}  \sqrt{2}

 \sf \implies \:  hypotenuse \:  = 2 \: m

To check :

Substitute values of each side.

Perimeter of triangle = side + side + hypotenuse.

Perimeter of triangle = √2 + √2 + 2

= 1√2 + 1√2 + 2

= (1+1) √2 + 2

= 2√2 + 2

= 2+ 2√2 m

Therefore , hence the hypotenuse of triangle is 2m.

Attachments:
Similar questions