Math, asked by LouizaADrozario, 9 months ago

If the perimeter of an equilateral triangle is 36 cm , calculate its are and height.

Answers

Answered by apm43
4

 \mathfrak \blue { \underline{ \underline{here \: is \: your \: answer : }}} \\ perimeter \: of \: an \: equilateral \: traingle \:  = 3a \\ p = 3a \\ 36 = 3a \\ a =  \frac{36}{3}  \\ a = 12 \\ so..area \: of \: a \: equilateral \: traingle \: is \:  =  \frac{ \sqrt{3} }{4}  {a}^{2}  \\  \\ a =  \frac{ \sqrt{3} }{4}  \times 12 \times 12 \\ a = 36 \sqrt{3} c {m}^{2}

Height of the triangle is 2√2cm

Hope my answer will help you..

Answered by Mysterioushine
31

GIVEN :-

  • Perimeter of an equilateral triangle is 36 cm

TO FIND :-

  • Area and height of the equilateral triangle

SOLUTION :-

Perimeter of a equilateral triangle is given by ,

 \large{\underline {\boxed{ \bigstar{  | { \sf{ \: P = 3a}}}}}}

Where ,

  • a is side of the equilateral triangle

We have ,

  • Perimeter of equilateral triangle as 36 cm

 \implies \sf \: 3a = 36 \\  \\  \implies \sf \: a =  \frac{36}{3}  \\  \\  \implies   {\underline {\boxed {\pink{\sf {\: a = 12}}}}}

Area of equilateral triangle is given by ,

 \large {\underline {\boxed {\bigstar {\sf{ \: A=  \frac{ \sqrt{3} }{4}  {a}^{2} }}}}}

 \implies \sf \: A =  \frac{ \sqrt{3} }{4} (12) {}^{2}  \\  \\  \implies \sf \: A =  \frac{ \sqrt{3} }{4} (144) \\  \\  \implies \sf \: A =   \sqrt{3} (36) \\  \\  \implies {\underline{ \boxed {\blue {\sf{A = 36 \sqrt{3}  \: cm {}^{2} }}}}}

Height of an equilateral triangle is given by ,

\large {\underline {\boxed {\bigstar {\sf{ \: H=  \frac{ \sqrt{3}a }{2}  }}}}}

 \implies \sf \: H =  \frac{ \sqrt{3} (12)}{2}  \\  \\  \implies \sf \: H=  \frac{ \sqrt{3}( \cancel{12}) }{ \cancel{2}}  \\  \\  \implies \sf \: H =  \sqrt{3} (6) \\  \\  \implies {\underline {\boxed {\blue{ \sf{H = 6 \sqrt{3}  \: cm}}}}}

∴ The height and area of the given equilateral triangle are \large\sf{6\sqrt{3}} cm and \large\sf{36\sqrt{3}} cm²

Similar questions