French, asked by MsAttitude01, 4 months ago

if the perimeter of an equilateral triangle is 360 cm. Then its area will be​

Answers

Answered by baby2006
3

Answer:

Perimeter : 360 cm

formula to calculate perimeter : 3 × side

applying Formula : 3 × s => 360

: s => 360 / 3

: s => 120 cm

120 cm is a side of an equilateral triangle...

then , Area of the equilateral ∆ is 3600√3cm.

Hope it helps you dear.......

_ _

Answered by MysteriousLadki
3

 \huge { \boxed{ \sf{ \red{ Question:-}}}}

If the perimeter of an equilateral triangle is 360 cm. Then its area will be

 \huge { \boxed{ \sf{ \orange{ Answer:-}}}}

Area of the equilateral triangle is 3600√3 cm.

 \huge { \boxed{ \sf{ \green{ Explanation:-}}}}

 \large{ \underline {\sf {\purple{Given:- }}}}

  • Perimeter of equilateral triangle is 360cm.

 \large{ \underline {\sf {\purple{To \:  Find:-}}}}

  • Area of equilateral triangle.

 \large{ \underline {\sf {\purple{Understanding:-}}}}

As we know the formula for finding perimeter of equilateral triangle is:-

\sf{perimeter = sum \: of \: all \: sides}

So, we will find all sides(that are always equal) by using this formula.

 \implies \sf{p = 3s}

Where,

  • 3s = 3 equal sides of triangle
  • p = perimeter

 \implies \sf{360= 3s}

 \implies \sf{ \frac{360}{3}  = s}

 \implies \sf{ 120 = s}

So, the equal sides of triangle are 120cm.

Diagram:-

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf A$}\put(0.5,-0.3){$\bf C$}\put(5.2,-0.3){$\bf B$}\end{picture}

 \large{ \underline {\sf {\purple{Syncing:-}}}}

Formula for finding the area of equilateral triangle is

 \sf {Area =  {\sf{\begin{gathered}\rm \frac{\sqrt{3}}{4} s²\\\sf\end{gathered}}}}

Now, let's put all the values.

 \sf {Area =  {\sf{\begin{gathered}\rm \frac{\sqrt{3}}{4} 120²\\\sf\end{gathered}}}}

 \implies \sf area ={\sf{\begin{gathered}\rm\frac{\sqrt{3}}{4} 120 \times 120\\\sf\end{gathered}}}

  \implies \sf area =  \sqrt{30}  \times 30 \times 120

  \implies \sf area =  3600 \sqrt{3} cm

So, the area of equilateral triangle is 3600√3 cm.

Similar questions