Math, asked by himanshu65424, 8 months ago

if the perimeter of an equilateral triangle is 60 cm then what is its area.​

Answers

Answered by khushisingh637
4

\huge\bold\red{ solution }

given ;

perimeter of an equilateral triangle = 60 cm

to find ;

area of an equilateral triangle ????

proof ;

perimeter of an equilateral triangle = 3a

60 = 3a \\ (where \:  a \: is \: side) \\  \\ a =  \frac{60}{3}  \\  = 20cm \:

side of an equilateral triangle = 20 cm

area =  \frac{ \sqrt{3} }{4} a ^{2} \\  \\ area =  \frac{ \sqrt{3} }{4}   \times 20 \times 20 \\  \\ area = 100 \sqrt{3}

Answered by Anonymous
3

Step-by-step explanation:

We have given that,

Perimeter = 60 cm

So, Semi Perimeter = \dfrac{60}{2} = 30 cm

Hence,the Length of each side will be :]

 \\ \sf a + a + a = 60  \\  \\

\\ \sf 3 a = 60  \\  \\

\\ \sf a  =  \dfrac{60}{3}  \\  \\

\purple{\sf a = 20 \: cm} \\

Now, we will find the area of equilateral triangle by given below formula :]

\bigstar\:\:\boxed{\underline{\underline  {\sf  Area = \sqrt{s(s - a)(s - b)(s - c)}}}} \:  \: \bigstar \\

Now, putting the given values in above formula we get :

: \implies\sf  Area = \sqrt{30(30 - 20)(30 - 20)(30- 20)} \\  \\

: \implies\sf  Area = \sqrt{30 \times 10 \times 10 \times 10} \\  \\

: \implies\sf  Area = \sqrt{3 \times 10 \times 10 \times 10 \times 10} \\  \\

: \implies\sf  Area = 10 \times 10 \sqrt{3}\\  \\

: \implies \underline{  \boxed{\sf  Area = 100 \sqrt{3} \: cm^{2} }} \\  \\

Similar questions