Math, asked by michellelodhi, 10 months ago

If the perimeter of an equilateral triangle is 9 cm. Then its area is ………….sq. cm.​

Answers

Answered by Harshita610
2

Answer:

12

Step-by-step explanation:

Perimeter of a equilateral triangle = 3*side

9=side*3

9/3=side

3=side

Now,

Perimeter of Square =4*side

=4*3

=12

If like please mark as brainliest answer

Thank you so much ^_^

Answered by Anonymous
15

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

If the perimeter of an equilateral triangle is 9 cm. Then its area is ………….sq. cm.

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{\pink{Given}}}}}

  • perimeter of equilateral triangle = 9 cm

\Large{\underline{\mathfrak{\bf{\pink{Given}}}}}

  • Area of equilateral triangle

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

we know,

In equilateral triangle sides are same ,

So,Let

  • Side will be = x

\small\boxed{\sf{\:perimeter_{eqilateral\:triangle}\:=\:Sum\:of\:all\:sides}} \\ \\ \mapsto\sf{\:9\:=\:x+x+x} \\ \\ \mapsto\sf{\:3x\:=\:9} \\ \\ \mapsto\sf{\:x\:=\:\dfrac{\cancel{9}}{\cancel{3}}} \\ \\ \mapsto\sf{\:x\:=\:3}

Thus:-

  • Side of equilateral triangle = 3 CM

Now, calculate area :-

\small\boxed{\sf{\:Area_{Equilateral\:triangle}\:=\:\dfrac{\sqrt{3}.(side)^2}{4}}} \\ \\ \mapsto\sf{\:Area_{triangle}\:=\:\dfrac{\sqrt{3}.(3)^2}{4}} \\ \\ \mapsto\sf{\blue{\:Area_{triangle}\:=\:\dfrac{9.\sqrt{3}}{4}\:cm^2\:\:\:\:Ans}}

Similar questions